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1To the title page: What is the meaning of ΦSX? Firstly, it reads like “Physics”. Secondly the symbols stand for
the three main pillars of theoretical physics: “X” is the symbol for the coordinate of a particle and represents Classical
Mechanics. “Φ” is the symbol for the wave function and represents Quantum Mechanics and “S” is the symbol for the
Entropy and represents Statistical Physics.
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Chapter 1

Syllabus

• two-center bond, three-center bond, chains and rings:
(Two-center bond demonstrates perturbation theory. Relation of degenerate levels to Jahn
Teller effect, Peierls distortion and nesting. Three-center bond and non-bonding orbitals.
Chains and multilayer structures. rings and periodic boundary conditions.)

• Symmetry

• Periodic boundary conditions, Density of states, Reciprocal lattice, Bloch theorem, meaning of
band structures, band structures as general concept, relation to Boltzmann equation. Excita-
tions, Quasi-particles

• Estimation of density of states for solids.

• Density functional theory

• Born-Oppenheimer approximation, Frank Condon, conical intersections. Force fields, phonons.
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Chapter 2

The covalent bond

Chapter 2 of P. Blöchl, ΦSX: Chemical bond

2.1 Linear combination of atomic orbitals (LCAO)

The LCAO method has been proposed first by Bloch[1]. Slater and Koster[2] showed how the matrix
elements can be evaluated from a small number of parameters.

Already the states of electrons in most molecules cannot be solved exactly. The problem is related
to the interaction. One approximation is to assume that the electrons are not interacting. A sound
theoretical justification for this approximation is given by density functional theory (DFT), which
maps the interacting electrons onto non-interacting electrons in an effective potential. However,
density functional theory introduces additional terms in the total energy that we will not consider at
this point.

We still need to determine the electronic wave functions for a complicated potential. That is we
need to solve the Schrödinger equation

[−~2
2me

~∇2 + v(~r)− ǫn
]

ψn(~r) = 0

which, in bra-ket notation has the form
[
p̂2

2me
+ v̂ − ǫn

]

|ψn〉 = 0 (2.1)

with v̂ =
∫
d3r |~r 〉v(~r)〈~r |. One way to tackle this problem is to define a basis set so that we can

write the one-particle wave functions |ψn〉 as superposition of basis functions |χR,ℓ,m,σ,i 〉. Let us
at the moment consider the wave functions of the isolated atoms as basis functions. The index R
denotes a given atomic site, ℓ is the angular momentum quantum number, m the magnetic quantum
number and σ is the spin quantum number. i is the principal quantum number of the atom. In the
following we will use a shorthand for the indices so that α = (R, ℓ,m, σ, i). Thus we represent the
one-particle wave functions as

|ψn〉 =
∑

α

|χα〉cα,n (2.2)

We insert the ansatz Eq. 2.2 into the Schrödinger equation Eq. 2.1, and multiply the equation
from the left with 〈χβ |. This leads to a generalized eigenvalue problem1 for matrices

∑

α

(Hβ,α − ǫnOβ,α) cα,n = 0 (2.3)

1An eigenvalue problem is called generalized if it has an overlap matrix that differs from the unity matrix

11



12 2 THE COVALENT BOND

where the Hamilton matrix Hα,β and the overlap matrix Oα,β are defined by

Hα,β = 〈χα|
p̂2

2me
+ v̂ |χβ〉

Oα,β = 〈χα|χβ〉

A generalized eigenvalue problem, can be solved numerically using the LAPACK library[?]. The
generalized eigenvalue problem yields the eigenvalues ǫn and the eigenvectors ~cn with elements cα,n.

The generalized eigenvalue problem does not yet determine the norm of the eigenvectors. The
normalization condition is

〈ψn|ψm〉 =
∑

α,β

c∗α,nOα,βcβ,m = δn,m

2.2 From non-orthonormal to orthonormal basis functions

We consider here only one orbital on each atom as, for example, in the hydrogen molecule. We will
see that the concept can be generalized to most chemical bonds. The resulting eigenvalue equation
is

2∑

β=1

Hα,βcβ,n =

2∑

β=1

Oα,βcβ,nǫn

where H is the Hamilton matrix and O is called the overlap matrix. The diagonal elements are
approximated by the atomic eigenvalues ǭ1 and ǭ2 of the two atoms and the diagonal elements of the
overlap matrix are unity, if we start form normalized eigenvalues. We rename H12 = t and O12 = ∆
so that

H =

(

ǭ1 t

t∗ ǭ2

)

and O =

(

1 ∆

∆∗ 1

)

(2.4)

The parameter t is called hopping matrix element.2

Approximate orthonormalization

Below, we will work with orthonormal basissets, even though the overlap is not negligible. For a
non-orthonormal basis set the first step is an orthonormalization.

The Schrödinger equation (H− ǫnO)~cn = 0 can be rewritten by multiplication from the left with
O−

1
2 .

(H − ǫnO)~cn = 0
⇒ O−

1
2 (H − ǫnO)O−

1
2O

1
2

︸ ︷︷ ︸

=111

~cn = 0

⇒
(

O−
1
2HO−

1
2

︸ ︷︷ ︸

H′′′

−ǫn
)

O
1
2 ~cn

︸ ︷︷ ︸

~c ′

= 0

A function of an operator, such as the inverse square root, is defined via its Taylor expansion.
The Taylor expansion of f (x) = (1 + x)−

1
2 is f (x) = 1− 12x +O(x2). Thus the inverse square roort

of the overlap operator is
(

1 ∆

∆∗ 1

)− 1
2

=

(

1 − 12∆
− 12∆∗ 1

)

+O(|∆|)2

2The name results from the picture of an electron hopping from site to site. This transport is larger if the hopping
matrix element is larger. It is often used in the context of orthonormal orbitals.
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This gives us the transformed Hamiltonian in the form

H′′′ =

(

ǭ1 − Re[∆∗t] t + ∆ ǭ1+ǭ22
t∗ + ∆∗ ǭ1+ǭ22 ǭ2 − Re[∆∗t]

)

+O(|∆|2)

Normally the hopping matrix element t is negative and the overlap matrix element ∆ is positive.
We then observe that the diagonal elements are shifted upwards in energy. This effect is called Pauli
repulsion: If two atoms come close, their atomic orbitals overlap. When orthogonality is restored, the
energy levels shift up. A simple argument goes as follows: As two atoms overlap, the electrons repell
each other due to the Pauli principle. The atoms become effectively compressed. As a consequence,
via Heisenberg’s uncertainty principle3, the kinetic energy is increased and energy is shifted up.

Wolfsberg-Helmholtz Formula

We may use a simple empirical relation for the hopping matrix elements, namely the Wolfsberg-
Helmholtz formula[3], which says

t = k
ǭ1 + ǭ2
2
∆ (2.5)

where k ≈ 1.75 is an empirical constant. Values for k depend somewhat on the type of the bond
and vary between 1.6 and 2.0. For a motivation of the Wolfsberg formula see App. ?? on p. ??.

One can now orthonormalize the orbitals. Using the Wolfsberg-Helmholtz formula Eq. 2.5 we
obtain a Hamiltonian to first order in ∆ which has the form

H
′ =

(

ǭ1 (k − 1) ǭ1+ǭ22 ∆
(k − 1) ǭ1+ǭ22 ∆∗ ǭ2

)

and O
′ =

(

1 0

0 1

)

The derivation is given in App. ??.
The main difference to the general Hamilton matrix given in Eq. 2.4 is a renormalization of the

hopping matrix element.

Complete neglect of overlap (CNO)

Since we want to approach the problem in small steps, we go back to Eq. 2.4 and ignore the off-
diagonal elements of the overlap matrix. Thus, in the following we consider instead

H =

(

ǭ1 t

t∗ ǭ2

)

and O =

(

1 0

0 1

)

(2.6)

For our discussion it is important that t < 0, which is usually fulfilled. This approximation is called
Complete Neglect of Overlap (CNO).

2.3 The two-center bond

. We consider now the simple case of a system with two orbitals. The typical example is a hydrogen
molecule. However the findings will be more general and will be applicable in most cases where two
atoms form a bond.

The model Hamiltonian, we investigate, is

H =

(

ǭ1 t

t∗ ǭ2

)

and O = 1 =

(

1 0

0 1

)

3Heisenberg’s uncertainty principle says that the variation of position and momentum is equal or larger than 1
2
~,

that is ∆x∆p ≥ 1
2
~. This suggests that the momentum of a confined particle should be larger than about p > ~

2∆x
.

Hence the energy would be about Ekin >
~
2

m(2∆x)2
. This says that the kinetic energy rises with confinement.
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Eigenvalues

We diagonalize the Hamiltonian by finding the zeros of the determinant of H − ǫ1.4 The zero’s of
the characteristic polynomial determine the eigenvalues

0 = (ǭ1 − ǫ)(ǭ2 − ǫ)− |t|2

EIGENVALUES OF THE TWO-CENTER BOND

ǫ± =
ǭ1 + ǭ2
2

±

√
(
ǭ1 − ǭ2
2

)2

+ |t|2 (2.7)

1
ε

ε

−

ε+

t

ε

ε2

Fig. 2.1: Energy levels of the two-center bond as function of the hopping parameter t.

The result of Eq. 2.7 is shown in Fig. 2.1. If the hopping parameter t vanishes, the eigenvalues
are, naturally, just the diagonal elements of the Hamiltonian, the “atomic energy levels” ǫ1 and ǫ2.
With increasing hopping parameter the splitting of the energy levels grows. It never becomes smaller!

• for a large hopping parameter t, i.e. for |t| >> |ǭ2 − ǭ1|, we obtain approximately

ǫ± ≈
ǭ1 + ǭ2
2

± |t| (2.8)

If the hopping parameter becomes much larger than the initial energy level splitting ǫ2− ǫ1, the
energy levels deviate approximately linearly with t from the mean value.

• for a small hopping parameter t, i.e. for |t| << |ǫ2 − ǫ1|, we obtain approximately

ǫ− ≈ ǭ1 −
|t|2

|ǫ2 − ǫ1|
(2.9)

ǫ+ ≈ ǭ2 +
|t|2

|ǫ2 − ǫ1|
(2.10)

For small t the energy levels deviate approximately quadratic with t from their t = 0 values.
The level shift is larger if the energy levels lie close initially.

4The condition that the determinant vanishes, that is det[H − ǫO] = 0 determines the eigenvalues of the system.
We need to determine the zeroes of a polynomial of the energy. This polynomial is called the characteristic polynomial
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Diagonalization conserves the trace

Note, that the mean value of the eigenvalues remains always the same, if basisset is orthonormal.
This is a consequence of the fact that the trace of a matrix is invariant under unitary transformation.

The normalized eigenvectors ~cn of a hermitean matrix H form a unitary matrix U with Uα,n = cα,n.
Thus the eigenvalue equation has the form

HU = Uh

where h is a diagonal matrix with the eigenvalues ǫn on the main diagonal and U is unitary, that is
UU† = 111. Then we can show

∑

α

Hα,α = Tr[H] = Tr[HUU
†] = Tr[UhU†] = Tr[U†Uh] = Tr[h] =

∑

n

ǫn

which prooves that the sum of eigenvalues is identical to the sum of diagonal elements of the
Hamiltonian.

This statement is important because it says that the stabilizing effect of a bond is exactly canceled
by the destabilizing effect of the corresponding antibond.

This statement is however only true for an orthonormal basis set. If the overlap matrix is not unity,
there is the Pauli repulsion shifting the orbitals upward. The statement of the trace conservation
however says that only the overlap matrix is able to shift the mean value of the energies.

Eigenvectors

The two eigenvectors ~cn with n ∈ {+,−} are obtained from (H − ǫn111)~cn = 0, that is alternatively
from the equation

(ǭ1 − ǫ±)c1,± + tc2,± = 0 (2.11)

or from

t∗c1,± + (ǭ2 − ǫ±)c2,± = 0 (2.12)

Both equations lead to the same result.
In our two-dimensional case we can solve the equations simply by looking for an orthogonal vector

to the coefficients5 and to normalize it. Because the results will have a more transparent form, we
choose the second equation Eq. 2.12 for the lower, bonding eigenstate

c1,− =
ǭ2 − ǫ−

√

(ǭ2 − ǫ−)2 + |t|2
and c2,− =

−t∗
√

(ǭ2 − ǫ−)2 + |t|2
(2.13)

and the first equation Eq. 2.11 for the higher, antibonding state

c1,+ =
t

√

(ǭ1 − ǫ±)2 + |t|2
and c2,+ =

−(ǭ1 − ǫ±)
√

(ǭ1 − ǫ±)2 + |t|2
(2.14)

Both results can be combined into

EIGENVECTORS OF THE TWO-CENTER BOND

~c− =

(

1
−t∗
ǭ2−ǫ−

)(

1 +
|t|2

(ǭ2 − ǫ−)2
)− 1

2

and ~c+ =

(
t

ǫ+−ǭ1
1

)(

1 +
|t|2

(ǫ+ − ǭ1)2
)− 1

2

(2.15)

The eigenvalues ǫ± are given in Eq. 2.7.

In order to to make the the qualitatively relevent results more evident, we distinguish the degen-
erate limit, i.e. (ǫ2 − ǫ1) << |t| from the non-degenerate case (ǫ2 − ǫ1) >> |t|.

5A complex 2-dimensional vector ~b orthogonal to a vector ~a can be found simply as b1 = a2 and b2 = −a1
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Degenerate case

In the degenerate limit the two “atomic levels” are identical, i.e. ǭ1 = ǭ2 =: ǭ. The degenerate case
describes the bonding of two symmetric orbitals, such as the orbitals of a hydrogen molecule.

From Eq. 2.7 we can directly determine the energy eigenvalues as

EIGENVALUES OF THE DEGENERATE TWO-CENTER BOND

ǫ± = ǭ± |t| (2.16)

The lower wave function with energy ǫ− is is the bonding state and the upper wave function with
energy ǫ+ is called the anti-bonding state.

−t

+t

−

ψ

ψ

+

Let us consider the binding between two atoms with one electron each. Before the bond is
formed, the atoms are far apart and the hopping matrix element t vanishes. Once the bond has
formed, both electrons can move into the lower, bonding orbital. The energy gained is 2|t|. If there
are two electrons in each orbital or if there are no electrons the sum of occupied energy eigenvalues
remains identical. Occupying the anti-bonding orbital (at ǭ+ |t|) costs energy.

We can look up the eigenvectors from Eq. 2.15, but they are easily obtained directly6:
(

ǭ− ǫ± t

t∗ ǭ− ǫ±

)(

c1,±
c2,±

)

=

(

∓|t| t

t∗ ∓|t|

)(

c1,±
c2,±

)

= 0 ⇒ c2,± = ±
t

|t|c1,±

If the hopping parameter t is real and negative, we obtain the eigenstates

|Ψ−〉 = (|χ1〉+ |χ2〉)
1√
2

|Ψ+〉 = (|χ1〉 − |χ2〉)
1√
2

The state |Ψ−〉 with lower energy is the bonding state and the state |Ψ+〉 is the anti-bonding state.
The anti-bonding wave function has one node-plane, while the bonding wave function has none.

A node plane is that surface, where the wave function changes its sign.
The bonding wave function is stabilized, because the electron can spread over two sites: According

to Heisenberg’s uncertainty principle7, this spreading out leads to a lower kinetic energy.8

6Personally, I prefer the direct calculation, because the steps are easier to memorize than a formula
7Heisenberg’s uncertainty principle says in a specialized version, that ∆x∆p ≥ ~

2
.

8The reader may argue that the antibonding orbital is spread out over an even larger volume but has a higher
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The fact that the anti-bonding wave function has a node, indicates that it has a higher kinetic en-
ergy than the bonding state. Kinetic energy can be looked upon as a measure for the mean square curvature
of the wave function. This curvature becomes larger nodes are introduced.

We can now estimate the bond energy as function of the number of electrons. For each electron
in the bonding orbital we gain an energy t and for each electron in the anti-bonding orbital we loose
an energy t. Thus every electron in an anti-bonding orbital cancels the stabilization of an electron in
the bonding orbital.

Non-degenerate case

Let us now consider the non-degenerate state. We use Eq. 2.7 with the choice ǫ1 < ǫ2 and truncate
the Taylor expansion of the result in t after the second order. |t|.

ǫ± =
ǭ1 + ǭ2
2

±
√

(
ǭ1 − ǭ2
2
)2 + |t|2 = ǭ1 + ǭ2

2
±
[ ǭ2 − ǭ1
2

+
|t|2

ǭ2 − ǭ1
+O(|t|4)

]

APPROXIMATE EIGENVALUES OF THE NON-DEGENERATE TWO-CENTER BOND

ǫ− = ǭ1 −
|t|2

ǭ2 − ǭ1
+O(|t|4) (2.17)

ǫ+ = ǭ2 +
|t|2

ǭ2 − ǭ1
+O(|t|4) (2.18)

If we start from one electron in each orbital, the energy gain consists of two parts. First we gain
an amount ǭ2 − ǭ1 by transferring the electron from the upper orbital at ǭ2 to the lower orbital at
ǭ1. This is the ionic contribution, because a cation and an anion are formed. Secondly the lower
orbital is lowered through “hybridization” with the higher orbital and we gain 2|t|2

ǭ2−ǭ1 for the electron
pair. This covalent contribution becomes smaller the larger the initial energy separation. Thus if the
ionic contribution is large, the covalent contribution is usually small.

t2
|ε −ε |1 2 ψ−

ψ+

The eigenvectors can be obtained from Eq. 2.15, but approximate eigenstates are easily obtained

energy. Extending the argument based on Heisenbergs uncertainty principle to antibonding states can be done, but it
appears a bit artificial: Consider a particle in a box. In that case the atomic case corresponds to a box only half as
large. Thus the volume for the electron becomes larger in the molecule, that is the larger box. The node-plane restricts
the “effectively accessible volume”. Thus the antibonding state has higher energy. In a real molecule the electron can
avoid some of this penalty by moving into a region with higher potential, but this can be considered a secondary effect.
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directly by inserting the approximate eigenvalues into
(

ǭ1 − ǫ± t

t∗ ǭ2 − ǫ±

)(

c1,±
c2,±

)

= 0

We use the upper row for the lower eigenvalue ǫ− and insert the approximate value from Eq. 2.18.

|t|2
ǭ2 − ǭ1

c1 + tc2 = 0 ⇒ c2 =
−t∗
ǭ2 − ǭ1

c1

Analogously, we obtain the eigenstate for the upper eigenvalue from the second row of the matrix
equation. The normalization only enters in second order of |t|, and will be neglected. The result can
be compared to the Taylor expansion of Eq. 2.15.

Let us now consider the eigenstates

|Ψ−〉 ≈ |χ1〉+ |χ2〉
−t∗
ǭ2 − ǭ1

|Ψ+〉 ≈ |χ2〉 − |χ1〉
−t

ǭ2 − ǭ1
The bonding state is mostly localized on the atom with lower energy, but both orbitals contribute
with the same sign. The anti-bonding state is localized mostly on the atom with higher energy and,
as in the degenerate case there is a node plane between the atoms.

2.4 Bonds and occupations

We find that the destabilization of the anti-bonding orbital is identical to the stabilization of the
bonding orbital. The underlying reason can be traced to the fact that the trace of a matrix is
invariant under unitary transformation. As we diagonalize the Hamiltonian, we perform a unitary
transformation from the original basis set to the eigenstates of the Hamiltonian. Thus the sum
of the eigenvalues is equal to the sum of the Hamilton expectation values of all basis functions.
However, the observation that the stabilization of the bonding state and the destabilization of the
anti-bonding state compensate each other exactly is only true for orthonormal basis sets.

1 2|ε −ε |
t2

No Bond
E=−2∆

No Bond

Thus we gain energy only if the orbitals are partially occupied. This statement has important
consequences:

• Orbitals that lie far from the Fermi-level do not contribute to bonding. This explains why the
role of core states to binding can be ignored. The interaction of core states from different
atoms is negligible because bonding and anti-bonding orbitals are occupied.
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• Molecules with unpaired electrons are very reactive because they have an orbital close to the
Fermi level, that can interact with both, filled and empty, orbitals. Such molecules are called
radicals. An example for a radical is the hydroxyl radical OH. Because radicals are so reactive
they are very rare. Nevertheless they often play an important role as intermediate in chain
reactions. Thus most orbitals exhibit paired electrons

• Molecules with an empty orbital just above the Fermi level are called an electrophile. Molecules
with a filled orbital just below the Fermi level are called a nucleophile. An electrophile can only
form a bond with a radical or a nucleophile. If two electrophile come together no bond can
be formed because both orbitals are empty. If two nucleophiles come together, they cannot
form a bond because a bond would result in occupied bonding as well as anti-bonding states,
so that the net stabilization would vanish. The name electrophile indicates that the molecule
“likes electrons”, namely those of the nucleophile.

• Molecules can exhibit electrophilic and nucleophilic behavior at the same time. The electrophilic
and nucleophilic orbitals are called frontier orbitals[4]. These are the orbitals that control the
reactivity of a molecule. Usually these frontier orbitals are the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).

• Molecules with a large band gap between occupied and unoccupied states tend to be very stable,
while molecules with orbitals near the Fermi level tend to be reactive.

2.5 Three-center bond

While most bonds can be characterized as two-center bonds, one often encounters bonds between
three centers. Let us consider a central atom with two ligands on either side.

t22
|ε −ε |1 2

ε1

ε2

The Hamiltonian has the form

H =






ǫ1 t 0

t∗ ǫ2 t

0 t∗ ǫ1






The characteristic equation det[H− ǫ1] = 0 is

(ǫ1 − ǫ)
[
(ǫ2 − ǫ)(ǫ1 − ǫ)− |t|2

]
− t2(ǫ1 − ǫ) = 0

(ǫ1 − ǫ)
[
(ǫ2 − ǫ)(ǫ1 − ǫ)− 2|t|2

]
= 0
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We can see that there are three states: a bonding state, a non-bonding state and an anti-bonding
state. Due to symmetry, the non-bonding state cannot interact with the orbital on the central atom.

The bond strength of a three-center bond is intermediate between one and two two-center bonds.
The second bond contributes about one-half of a full bond.

Characteristic for a three center bond is that it maintains its full bond strength for two, three and
four electrons, because the electrons enter into the non-bonding orbital, which does not contribute
to the bond-strength.

Fig. 2.2: The hydrogen complex with an oxygen
vacancy in silica is responsible for stress-induced
leakage currents in transistors. Because the elec-
trons tunnel through a non-bonding orbital of
the three-center bond Si-H-Si, electrons are not
trapped. Red balls are oxygen atoms, yellow balls
are silicon atoms and the white ball is a hydro-
gen atom. Structures for the three charge states
+/0/- are superimposed. Only the relevant atoms
out of the infinite crystal are shown. From [5, 6].

2.6 Chains and rings

Let us now extend our description from a three-center bond to a chain and ring structures of many
atoms.

A chain is a model for a polymer, such as polyacetylene9 It is also a model for a finite cluster. It
is also a model for a state in a semiconductor heterojunction, which is within the conduction of one
material, but in the band gap of the two neighboring materials.

A ring is a model for example for aromatic molecules such as benzene.
Chains and rings will later be important for the description of solids. For the description we will use

periodic boundary conditions, two describe an infinite crystal. In one dimension, this construction
corresponds directly to a ring structure. Similarly, the chain is a one-dimensional model for a solid
with surfaces.

2.6.1 Chains

We assume that all atoms are identical.

t t t t

0ε 0ε 0ε 0ε 0ε 0ε 0ε

t t

Here and in the following we assume that the hopping parameter t is a real number

9Polyacetylene (CH)n dimerizes. The chain may describe the pi orbitals for the undimerized polyacetylene. For the
dimerized system the antibonding orbitals of a dimer may play the role of one orbital in our model
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The Hamiltonian of the linear chain has the following form

H =











ǫ0 t 0 0 · · ·
t ǫ0 t 0 · · ·
0 t ǫ0 t · · ·
0 0 t ǫ0 · · ·
...

...











with Im[t] = 0

The Schrödinger equation (H− ǫ1)~c = 0 can be written line-by-line as

(ǫ0 − ǫ)c1 + tc2 = 0 (2.19)

tci−1 + (ǫ0 − ǫ)ci + tci+1 = 0 for 2 < i < N − 1 (2.20)

tcN−1 + (ǫ0 − ǫ)cN = 0 (2.21)

Let us make a little detour, before we continue: Eq. 2.20 has similarities with a differential equation.
Introducing a small spacing ∆, it can be written in the form

t∆2
ci−1 − 2ci + ci+1

∆2
︸ ︷︷ ︸

≈∂2x f (x)

+(ǫ0 + 2t)ci − ǫci = 0

If we consider a function f (x) with values f (j∆) = cj , we can look at the above equation as a
discretized version of the following differential equation for f (x)

[
t∆2∂2x + (ǫ0 + 2t)− ǫ

]
f (x) = 0

This equation is analogous to the one-dimensional Schrödinger equation for a constant potential.
The solutions of this problem are plane waves, which we can exploit to find a solution for the original
problem.

Dispersion relation

After this intermezzo let us continue with the equation for the orbital coefficients. The translational
symmetry suggests that we use an exponential ansatz for Eq. 2.20.

cj = e
ik∆j (2.22)

We have inserted here the spacing ∆ between the sites, so that the parameter k has the usual meaning
and units of a wave vector.

Insertion of this ansatz into Eq. 2.20 yields

te−ik∆ + (ǫ0 − ǫ) + teik∆
Eqs. 2.20,2.22

= 0

⇒ 2t cos(k∆) + (ǫ0 − ǫ) = 0

⇒ ǫ(k) = ǫ0 + 2t cos(k∆) (2.23)

This is the dispersion relation ǫ(k) for the linear chain, shown in Fig. 2.3.
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Fig. 2.3: Dispersion relation of the linear chain. The green points correspond to the energy levels of a
chain with 11 atoms. In the middle figure we show the energy levels, and on the right the schematic
density of states D(ǫ) for the infinite chain.

While it is common for small molecules to investigate the energy levels individually. However, for
complex molecules or crystals, the energy levels are positioned so close in energy that such a repre-
sentation is no more useful. Therefore one chooses a different representation, namely the Density of
States. As the name says the density of states is the density of energy levels as function of energy.
For s molecule with discrete energies, the density of states would be a sum of δ-functions, one for
each energy level. For our chain, we will see below that the allowed k-values are equi-spaced on
the k-axis. Using the dispersion relation ǫ(k), we can determine the spacing of energy levels on the
energy axis.

∆ǫ =
dǫ

dk
︸︷︷︸

vg

∆k

which gives us the density of states as

D(ǫ) =
1

∆ǫ
=

(
dǫ

dk

)−1
1

∆k

Thus the density of states of a one-dimensional system is proportional to the inverse slope of the
dispersion relation. The shape of the density of states shown in Fig. 2.3 is characteristic for a one-
dimensional problem. For two or three dimensional problems the density of states would not diverge
at the band edges, but start with a step in two dimensions or like the square root of the energy
relative to the band edge in three dimensions.

Boundary conditions

We still need to enforce the boundary conditions Eqs. 2.19,2.21. We can bring the boundary condi-
tions into the form of the central condition Eq. 2.20.

tci−1 + (ǫ0 − ǫ)ci + tci+1 = 0 for 1 < i < N and c0 = cN+1 = 0 (2.24)
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Note that the values i = 1 and i = N were not allowed for Eq. 2.20. I like this form, because it
is now analogous to the particle-in-a-box problem. The only difference is the disrete nature of this
problem.

For a given energy we obtain two linear independent solutions, which we superimpose to form a
general ansatz.

cj = Ae
ik∆j + Be−ik∆j (2.25)

The boundary conditions, now in the form c0 = cN+1 = 0, determine the allowed values for k and
B
A .

• The first boundary condition

0 = c0
Eq. 2.25
= A+ B ⇒ B = −A

restricts the Ansatz Eq. 2.25 for the wave function to pure sine functions, i.e.

cj = 2iA sin(k∆j) (2.26)

• the second boundary condition

0 = cN+1 = 2iA sin(k∆(N + 1))

restricts the wave vectors k to the discrete values

kn =
π

∆(N + 1)
n for integer n

Exclude trivial quantum numbers

Many solutions with different quantum number n are actually identical. This can be seen as follows:
Consider the orbital coefficients in Eq. 2.27.

• periodicity of the sine function

sin(kn∆j) = sin(kn∆j + 2πj) = sin

([

kn +
2π

∆

]

∆j

)
Eq. 2.29
= sin

([ π

∆(N + 1)
n +

π

∆(N + 1)
2(N + 1)

]

∆j

)

= sin

(
π

∆(N + 1)

[

n + 2(N + 1)
])

= sin

(

kn+2(N+1)∆j

)

This shows that the adding 2(N + 1) to a quantum number n does not produce a new state.
Thus we can limit the quantum numbers N to the interval −N, . . . , N + 1

• antisymmetry of the sine function

sin(kn∆j) = − sin(−kn∆j)
Eq. 2.29
= − sin(k−n∆j)

Thus we can exclude all negative quantum numbers, that is all from −N to −1.

We are left with quantum numbers 0, 1, . . . , N + 1.
Two of the N + 2 quantum numbers produce a wave function that is zero, namely n = 0 and

n = N + 1. For this reason we limit the quantum numbers to the range from 1 to N.
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STATES OF THE LINEAR CHAIN

Thus the wave functions and energies are

|ψn〉 =
∑

j

|χj 〉 sin(kn∆j)
√

2

N + 1
(2.27)

ǫn = ǫ0 + 2t cos(kn∆) (2.28)

kn =
π

∆(N + 1)
n with n = 1, 2, . . . , N (2.29)

0 1 2 3 N N+1N+1

1

N+1N

20 3

Note that the envelope of the wave function corresponds directly to the states of a particle in a
box. This is a direct consequence of the analogy of Eq. 2.20 with a particle in a constant potential
discussed before.

Note that the three center bond is a simple example for a linear chain. It is instructive to compare
the general results obtained here for chains with those obtained previously for the three-center bond.

2.6.2 Rings

The Hamiltonian looks very similar to that of a linear chain. The only difference is that the first
atom in the ring is connected to the last one. Thus there is an addition hopping parameter in the
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upper right and the lower left corner of the matrix.

H =













ǫ0 t 0 0 · · · t
t ǫ0 t 0 · · · 0
0 t ǫ0 t · · · 0
0 0 t ǫ0 · · · 0
...

...
t 0 · · · 0 t ǫ0













Boundary conditions

In contrast to the linear chain, the ring has full translational symmetry, which is not even destroyed by
the boundaries. The boundary conditions can again be expressed by the first and the last line of the
Schrödinger equation. However, we can also treat the ring as an infinite chain with the requirement,
that the wave function is periodic, that is cN+1 = c1. We use the ansatz

cj = e
ik∆j

The boundary condition cN+1 = c1 requires that

cN+1 = e
ik∆(N+1) = c1 = e

ik∆ ⇒ eik∆N = 1 ⇒ kn∆N = 2πn

⇒ kn =
2π

N∆
n (2.30)

Exclude trivial quantum numbers

Two wave functions for two quantum numbers n and n′ are identical, if

eikn∆j = eikn′∆j for all integer j

⇒ ei(kn−kn′ )∆j = 1 for all integer j

⇒ kn′ = kn +
2π

∆
q with integer q

⇒ n′ = n + qN

States with quantum numbers that differ by N are identical. Therefore we limit wave vectors kn to
the interval ]− π

2 ,
π
2 ]. Only one of the values at the boundaries may be included.

STATES OF A RING

Thus we obtain the wave functions and the energy eigenvalues as

|ψn〉 =
∑

j

|χj 〉eikn∆j
1√
N

ǫn = ǫ0 + 2t cos(kn∆)

kn =
2π

N∆
n with n = −N

2
+ 1, . . . ,

N

2

The resulting k-values lie in the interval ]π∆ ,
π
∆ ].

The spacing in k-space is approximately twice as large as in the linear chain with the same number
of beads, but values with positive and negative kn are allowed.

Each pair of degenerate wave functions can be transformed into a pair of real wave functions, of
which one is a sinus and the other is a cosinus.
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Fig. 2.4: Dispersion relation of the ring. The green points correspond to the energy levels of a ring
with 14 atoms. In the middle figure we show the energy levels, and on the right the schematic density
of states D(ǫ) for the infinite chain.

Geometrical construction of the eigenstates

There is an interesting and easy way to memorize construction for the energy levels of a ring. The
construction is demonstrated in Fig. 2.5. If one inscribes an equilateral polygon corresponding to the
ring structure into a sphere, one can easily obtain the energy levels of the ring structure as vertical
position of the corners.

ε0

2t cos(  )ϕ

2|t|

2|t|

ϕ

Fig. 2.5: Geometrical construction for the energy levels of a symmetric ring structure with n corners.
The angles are φ = kn∆ = 2πn

N . Note that t is assumed to be negative.. With this assumption, the
polygon stands on its top. The vertical position of the sphere center is at ǫ0, and the radius is 2|t|.
The vertical positions of the corners are at the energy level positions ǫ0 + 2t cos(kn∆)

The construction follows directly from the quantization condition

kn =
2π

N∆
n for n = 0, 1, 2, . . . , N

and the dispersion relation

ǫ(k) = ǫ0 + 2t cos(k∆)
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Let us interpret φ := k∆ as an angle. The allowed values of the angle are φn = 2π
N n and the allowed

energy values are

ǫn = ǫ0 + 2t cos(φn)

The cosinus is the ratio of the adjacent leg10 to the hypotenuse of a rectangular triangle11. Thus
if the adjacent leg points from a point at height ǫ0 straight down (because t is negative), the end
point is the projection of the hypothenuse on the vertical axis. The hypotenuse shall have the length
2|t| and the end points lie on a circle with radius 2|t|. Since the allowed values of the angles, are
equispaced, and φ = 0 is an allowed angle, the end-points of the hypotenuses form the corners of an
equilateral polygon inscribed into the circle. The projection of the corners on the vertical axis gives
us the allowed eigenvalues.

2.6.3 Exercise: eigenstates of aromatic ring systems

• Draw the eigenstates of the π system of p orbitals on benzene. Benzene C6H6 is a symmetric
ring structure.

• Argue why cyclopentadiene C5H5 is found as an anion.

10adjacent leg is called “Ankathete” in german.
11A rectangular triangle is called “rechtwinkliges Dreieck” in german
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Chapter 3

The use of symmetry

Chapter 3 of P. Blöchl, ΦSX: Chemical bond

3.1 Introduction

Exploiting the symmetry allows one to break down a large eigenvalue problem into many smaller
ones. The complexity of a matrix diagonlization grows with the third power of the matrix dimension.
Therefore, it is much easier to diagonalize many smaller matrices than one big one, that is composed
of the smaller ones. If one manages to break down the problem into ones with only one, two or three
orbitals, we may use the techniques from the previous chapter to diagonalize the Hamiltonian. This
often allows one to obtain an educated guess of the wave functions without much computation.

As shown below, the eigenstates of the Hamiltonian are also eigenstates of the symmetry opera-
tor, if the Hamiltonian has a certain symmetry. (For degenerate states this is not automatically so,
but a transformation can bring them into the desired form.) Furthermore, we will show the following
statement, which will be central to this section:

BLOCK DIAGONALIZATION BY SYMMETRY

The Hamilton matrix elements between eigenstates of a symmetry operator with different eigenvalues
vanish.

In other words:
In a basis of symmetry eigenstates, the Hamiltonian is block diagonal. All states in a given block
agree in all symmetry eigenvalues.

3.2 Symmetry and quantum mechanics

Here, I will revisit the main symmetry arguments discussed in ΦSX:Quantum Physics. This is a
series of arguments that is good to keep in mind.

1. Definition of a transformation operator. An operator Ŝ can be called a transformation, if it
conserves the norm for every state.

∀|ψ〉 〈ψ|ψ〉 |φ〉=Ŝ|ψ〉= 〈φ|φ〉 (3.1)

29
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Fig. 3.1: Block form of a Hamiltonian by using symmetry eigenstates with symmetry eigenvalues
s1, s2, s3.

2. Every transformation operator is unitary, that is Ŝ†Ŝ = 1

∀|ψ〉 〈ψ|Ŝ†Ŝ|ψ〉 = 〈ψ|ψ〉 ⇒ Ŝ†Ŝ = 1 (3.2)

3. Definition of a symmetry: A system is symmetric under the transformation Ŝ, if, for any
solution |Ψ〉 of the Schrödinger equation describing that system, also Ŝ|Ψ〉 is a solution of the
same Schrödinger equation. That is, if

(
i~∂t |Ψ〉 = Ĥ|Ψ〉

) |Φ〉:=Ŝ|Ψ〉⇒
(

i~∂t |Φ〉 = Ĥ|Φ〉
)

(3.3)

4. A unitary operator Ŝ is a symmetry operator of the system, if

[Ĥ, Ŝ]− = 0 (3.4)

Proof: Let |Ψ〉 be a solution of the Schrödinger equation and let |Φ〉 = Ŝ|Ψ〉 be the result of
a symmetry transformation.

i~∂t |Φ〉 = Ĥ|Φ〉
|Φ:=Ŝ|Ψ〉⇒ i~∂t Ŝ|Ψ〉 = ĤŜ|Ψ〉

∂t Ŝ=0⇒ i~∂t |Ψ〉 = Ŝ−1ĤŜ|Ψ〉
i~∂t |Ψ〉=Ĥ|Ψ〉⇒ Ĥ|Ψ〉 = Ŝ−1ĤŜ|Ψ〉
(
ĤŜ − ŜĤ

)
|Ψ〉

︸ ︷︷ ︸

[Ĥ,Ŝ]−

= 0

Because this equation holds for any solution of the Schrödinger equation, it holds for any wave
function, because any function can be written as superposition of solutions of the Schrödinger
equation. (The latter form a complete set of functions.) Therefore

[Ĥ, Ŝ]− = 0

Thus, one usually identifies a symmetry by working out the commutator with the Hamiltonian.

5. The matrix elements of the Hamilton operator between two eigenstates of the symmetry op-
erator with different eigenvalues vanish. That is

(
Ŝ|Ψs〉 = |Ψs〉s ∧ Ŝ|Ψs ′〉 = |Ψs ′〉s ′ ∧ s 6= s ′

)
⇒ 〈Ψs |Ĥ|Ψs ′〉 = 0 (3.5)

Proof: In the following we will need an expression for 〈ψs |Ŝ, which we will work out first:



3 THE USE OF SYMMETRY 31

• We start showing that the absolute value of an eigenvalue of a unitary operator is equal
to one, that is s = eiφ where φ is real. With an eigenstate |ψs 〉 of Ŝ with eigenvalue s,
we obtain

s∗〈ψs |ψs〉s
Ŝ|ψs 〉=|ψs 〉s
= 〈Ŝψs |Ŝψs〉 = 〈ψs | Ŝ†Ŝ︸︷︷︸

1̂

|ψs〉 = 〈ψs |ψs〉

⇒ |s| = 1 (3.6)

• Next we show that the eigenvalues of the hermitian conjugate operator Ŝ† of a unitary
operator Ŝ are the complex conjugates of the eigenvalues of Ŝ.

Ŝ†|ψ〉 Ŝ
†Ŝ=1
= Ŝ−1|ψs〉

Ŝ|ψs 〉=|ψs 〉s
= |ψs〉s−1 = |ψs〉

s∗

ss∗
|s |=1
= |ψs 〉s∗ (3.7)

• Now, we are ready to show that the matrix elements of the Hamilton operator between
two eigenstates of the symmetry operator with different eigenvalues vanish.

We will use

〈ψs |Ŝ = s〈ψs | (3.8)

which directly follows from Eq. 3.7.

0
[Ĥ,Ŝ]−=0
= 〈Ψs |[Ĥ, Ŝ]−|Ψs ′〉 = 〈Ψs |ĤŜ|Ψs ′〉 − 〈Ψs |ŜĤ|Ψs ′〉

Ŝ|Ψs 〉=|Ψs 〉s,Eq. 3.8
= 〈Ψs |Ĥ|Ψs ′〉s ′ − s〈Ψs |Ĥ|Ψs ′〉 = 〈Ψs |Ĥ|Ψs ′〉(s ′ − s)
s 6=s ′⇒ 〈Ψs |Ĥ|Ψs ′〉 = 0 (3.9)

6. .
CONSTRUCTION OF SYMMETRY EIGENSTATES

Eigenstates of a symmetry operator with a finite symmetry group, that is ŜN = 1̂ for a given
eigenvalue sα can be constructed from an arbitrary state |χ〉 by superposition.

|Ψα〉 =
N−1∑

n=0

Ŝn|χ〉s−nα (3.10)

The eigenvalues sα of the symmetry operator Ŝ are

sα = e
i 2π
N
α , (3.11)

which follows from |sα| = 1 (Eq. 3.6) and sNα = 1. The operation in Eq. 3.10 acts like a filter,
that projects out all contributions from eigenvalues other than the chosen one. Therefore, the
result may vanish.

Proof:

Ŝ|Ψα〉 = Ŝ

N−1∑

n=0

Ŝn|χ〉s−nα =

[
N−1∑

n=0

Ŝn+1|χ〉s−(n+1)α

]

sα

ŜN=1̂;sNα=1
=

[
N−1∑

n=0

Ŝn|χ〉s−nα

]

sα = |Ψα〉sα
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With what has been discussed above, we have shown that the Hamilton operator is block diagonal
in a representation of eigenstates of its symmetry operators. The eigenstates of the Hamilton operator
can be obtained for each block individually. For us, it is more important that a wave function that
starts out as an eigenstate of a symmetry operator to a given eigenvalue, will always remain an
eigenstate to the same eigenvalue. In other words the eigenvalue of the symmetry operator is a
conserved quantity. (Note, that symmetry operators usually have complex eigenvalues)

The eigenvalues of the symmetry operators are the quantum numbers.

3.3 Symmetry eigenstates of the hydrogen molecule

Let us consider the hydrogen molecule and let us only consider the two s-orbitals. The hydrogen
molecule is symmetric with respect to a mirror plane in the bond center.

We orient the hydrogen molecule in z-direction and place the bond-center into the origin. The
mirror operation Ŝ about the bond center has the form

Ŝψ(x, y , z) = ψ(x, y ,−z)

or in bra-ket notation

〈x, y , z |Ŝ|ψ〉 = 〈x, y ,−z |ψ〉

If we apply the mirror operation twice, we obtain the original result. Therefore, Ŝ2 = 1̂ is the
identity. For an eigenstate

Ŝ|ψ〉 = |ψ〉s

we obtain

Ŝ2|ψ〉 = |ψ〉s2 Ŝ
2=1̂
= |ψ〉1

Hence we obtain s2 = 1 which has two solutions, namely s = 1 and s = −1.
We can now construct symmetrized orbitals out of our basis functions:

• for the eigenvalue s = +1 we obtain the symmetric state, namely

|χ′1〉 =
1√
2
(|χ1〉+ |χ2〉)

• for the eigenvalue s = −1 we obtain the anti-symmetric state, namely

|χ′2〉 =
1√
2
(|χ1〉 − |χ2〉)

The factor 1√
2

has been added to ensure that also the new orbitals are orthonormal.

In matrix-vector notation we may write1

(

|χ′1〉
|χ′2〉

)

=

(

|χ1〉
|χ2〉

)

1√
2

(

1 1

1 −1

)

1In the following expression one usually write the matrix to the left and the vector to the right. I use the convention
that, in an expression that is a ket-vector, the ket stands always on the left side and the matrix, on the right side.
From one notation to the other, it is necessary to transpose the matrix accordingly. For bra-expression the bra-vector
stands on the right side, and the matrix on the left. My notation has the advantage that the order of the individual
terms remains unchanged, when a bra and a ket is combined to a matrix element (bra-ket).
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Now we can transform the Hamiltonian into the new basis set. In terms of the atomic orbitals
the Hamilton matrix is

H =

(

ǭ t

t ǭ

)

The Hamiltonian in the basis of the new orbitals is

H
′ =

(

〈χ′1|Ĥ|χ′1〉 〈χ′1|Ĥ|χ′2〉
〈χ′2|Ĥ|χ′1〉 〈χ′2|Ĥ|χ′2〉

)

= U†HU =

(

ǭ+ t 0

0 ǭ− t

)

In this case we have already diagonalized the matrix. By introducing a basisset made of symmetrized
orbitals the Hamiltonian became block diagonal with two 1× 1 blocks.

3.4 Symmetry eigenstates of a main group dimer

Let us now consider the dimeric main group dimers. In addition to the two s-orbitals used for
hydrogen, we need to include also the p orbitals in the basis. The main group dimer is, in a way, the
prototype for a bond between two main group atoms.

As for the hydrogen molecule we will follow a sequence of steps:

1. choose a basisset

2. determine the symmetry of the molecule

3. select a subset of symmetry operations. Preferably, one selects operations that do not com-
mutate with each other. In that case they can be treated as independent.

4. For each set of eigenvalues of the symmetry operators, form the corresponding symmtrized
orbitals from the basis orbitals.

This procedure produces groups of orbitals, that block diagonalize the Hamiltonien. This is all one can
do with symmetry operations. What remains to be done is to diagonalize the remaining sub-blocks
of the Hamiltonian. This can be done in several ways, short of doing an ab-initio calculation.

• One can set up a parameterized Hamiltonian for the subblocks and diagonalize them. If the sub
groups only contain less than three orbitals, they can be diagonalized directly. If more orbitals
are involved, one better uses the computer.

• One can do the first steps of an iterative diagonalization by hand. This gives only approximate
answers, but often provides most insight.

Choose a basis

The first step is to choose a set of basis states. We start out here with atom-centered orbitals on
the two sites, denoted by a (the left one) and b (the right one).

The angular dependence is characterized by a “real” spherical harmonic (s, px , py , pz , dx2−y2 , . . .).
The first few have the form

Ys(~r) =
1√
4π

; Ypx (~r) =

√

3

4π

x

|~r | ; Ypy (~r) =

√

3

4π

y

|~r | ; Ypz (~r) =

√

3

4π

z

|~r |

b,px b,py b,pz

a,px a,py a,pz

b,s

a,s
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The angular dependence is illustrated as lobes wich are a schematic drawing of the polar-coordinate
representation of the real spherical harmonics.

The fat dot represents an atom for which none of its atomic orbitals contribute to the wave
function.

Symmetry operations of the molecule

We again by determining the symmetry of the molecule.

• mirror plane perpendicular to the bond through the bond center

• mirror planes with the bond in the mirror plane

• continuous rotational symmetry about the bond

• two fold rotational symmetry about any axis perpendicular to the bond, with the axis passing
through the bond center

• point inversion about the bond center

We only need to pick out a few. Since we are already familiar with mirror operations, let us pick
the three mirror planes.

C

B

A

One should select a subset of symmetry operations that commutate with each other. Symmetry
operations commutate, if the order in which they are performed on a general object does not affect
the final state.

Example for non-commutating operations

An example for two operations that do not commutate is given in Fig. 3.2 on p. 35.
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




0 −1 0
1 0 0

0 0 1






︸ ︷︷ ︸

Rz (90◦)






1 0 0

0 0 −1
0 1 0






︸ ︷︷ ︸

Rx (90◦)

=






0 0 1

1 0 0

0 1 0






︸ ︷︷ ︸

R(111)(90◦)

Rx (90◦)
︷ ︸︸ ︷





1 0 0

0 0 −1
0 1 0






Rz (90◦)
︷ ︸︸ ︷





0 −1 0
1 0 0

0 0 1




 =

R(11̄1)(90
◦)

︷ ︸︸ ︷





0 −1 0

0 0 −1
1 0 0






Fig. 3.2: Demonstration of two non-
commutative rotations. The result
(top) of a 90◦ rotation about the z-
axis (vertical) followed by a 90◦ about
the x-axis (horizontal, in the paper
plane) differs from the result (bot-
tom) obtained when the same oper-
ations are performed in reversed or-
der. R(111)(90

◦) denotes a 90◦ rota-
tion about the diagonal pointing along
(1, 1, 1). R(11̄1)(90

◦) denotes a 90◦

rotation about the (1,−1, 1) axis

Eigenstates of the symmetry operators

Our basis orbitals are an s-orbital on each atom and three p-orbitals on each atom. We now group
them according to the eigenvalues for the three mirror planes A,B,C.

We begin by grouping them according to the eigenvalues of B and C, because the orbitals we have
chosen are already eigenstates of these operations. The B+ indicates the states that are symmetric
with respect to the mirror plane B and B− indicates the states that are antisymmetric with respect
to the mirror plane B. We use the analogous notation for the mirror plane C. On the right hand side
we list those orbitals that have the corresponding behavior with respect to the two mirror planes.

B+ C+

B+ C−

C+

C−

B−

B−

b,py
b,py

b,pza,pz

b,sa,s a,px a,px

Now we form the symmetrized states with respect to A using Eq. 3.10 from p. 31. Note that we
need not consider any mixing between states from sets with different symmetry eigenvalues.

|Ψα〉 Eq. 3.10
=

N−1∑

n=1

Ŝn|χ〉s−nα (3.12)

We start with |a, s〉 and form ŜA|a, s〉 = |b, s〉. Thus the symmetric state with respect to the mirror
plane A is 1√

2

(
|a, s〉 = |b, s〉

)
and the antisymmetric state is 1√

2

(
|a, s〉 − |b, s〉

)
. Starting from the
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state |b, s〉 gives the same states. The state |a, px 〉 transforms into ŜA|a, px 〉 = −|b, px〉. Therefore
the symmetric state is 1√

2

(
|a, px 〉−|b, px 〉

)
and the antisymmetric state is 1√

2

(
|a, px 〉+|b, px 〉

)
. Note,

that a state with a positive sign is not automatically a symmetric state. Now new states are obtained
starting from |b, px 〉.

An important cross check is to verify that the number of orbitals in each group is the same before
and after symetrization.

B+ C−A+

B+ C−A−

C+B−A+

C+B−A−

C−B−A+

C−B−A−

B+ C+A+

B+ C+A−

+ )(2
1

(2
1 − )

(2
1 + )

− )(2
1

(2
1 )−

(2
1 + )

(2
1 + )

(2
1 + )

b,sa,s

a,py b,py

b,pxa,px

b,sa,s

a,px b,px

a,pz b,pz

a,pz b,pz

a,py b,py

Instead of solving a 8-dimensional eigenvalue problem, we only need to determine two 2-dimensional
eigenvalue problems, a tremendous simplification.

The two-dimensional problem can be estimated graphically. They correspond to the non-degenerate
problem of the two-center bond, discussed in section 2.3.

3.4.1 Approximate diagonalization

Up to now we have done all that can be done for the main-group dimer using symmetry alone. Now
we need to diagonalize the remaining sub-blocks of the symmetry eigenstates. Here, I will show how
one can get an idea of the eigenstates graphically, that is without any calculation. The results will be
approximate. Later we will see how to set up a parameterized Hamiltonian, and do the calculation
for a simple tight-binding model.

There are two problems to be solved:

• diagonalize the remaining sub-blocks containing more than one orbital

• determine the relative position of the orbitals
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Fig. 3.3: Schematic drawing of the hybridization of the σ states of a dimeric molecule. The vertical
axis corresponds to the energy of the orbitals

3.4.2 σ bonds and antibonds

The terms σ and π bond will be explained below. The σ bonds and antibonds result from the 2× 2
blocks with orbitals that have cylinder symmetry.

Let us consider once the s orbitals on both atoms. As known from the section on the two-center
boind, they form a bonding and an antibonding orbital. The bonding orbital is symmetric with respect
to mirror operation at the bond-center plane, and the antibonding orbital is antisymmetric. This is
the information we know also from the symmetry consideration, but now we also know that the
energy levels are centered at the “atomic s orbital energy”.

Similarly we form the bonding and antibonding p-orbitals, that again form a symmetric (bonding)
and an antisymmetric (antibonding) state.

From our symmetry considerations we know that only the bonding orbitals interact with each
other and the two antibonding orbitals interact with each other. This is indicated by the red arrows
in figure 3.3. Because they belong to different symmetry eigenvalues, the bonding orbitals do not
interact with the antibonding orbitals.

The hybridization of the two bonding orbitals is analogous to the two-center bond in the non-
degenerate case. Note that the model of a two center bond gave us a general recipy on diagonalizing
2× 2 Hamiltonians. The two states need not be orbitals on the two bonding partners.

The lower bonding level will have mostly s-character and it will lie even below the energy the pure
s-type orbital. The bonding p-orbital mixes into the s-type bond orbital so as to enhance the orbital
weight in the center of the bond, and to attenuate the wave function in the back bond. (pointing
away from the neighbor). This mixing of s and p-orbital forms so-called hybrid orbitals that willl be
discussed later.

The higher bonding orbital will lie above the p-type bonding orbital, and it will have predominantly
p-type character. However the s-type bonding orbital mixes in, but now in the opposite compared
to the bond orbital discussed above. Now the orbital in the middle of the bond is attenuated and
enhanced in the back bond. This weakening of the bond explains that the p-type bond orbital shifts
up in energy.

Similarly we can analyze the interaction between the two antibonding orbitals. Only here the
s-type antibond is weakened, so that it shifts towards lower energy and the p-type antibond is made
stronger, shifting it further up in energyâĽě.



38 3 THE USE OF SYMMETRY

3.4.3 π bonds and antibonds

The 1 × 1 blocks form the π bonds and antibonds shown in Fig. 3.4. Using what we learned from
the symmetric two-center bond, we know that bonding and antibonding orbitals are centered around
the “atomic p-level”. From the rotational symmetry of the bond, we can infer that the two bonding
orbitals are degenerate and that the two antibonding orbitals are degenerate, too.

Fig. 3.4: Schematic drawing of the hybridization of the π-states of a dimeric molecule. The vertical
axis corresponds to the energy of the orbitals

Finally we can place the orbitals into one diagram shown in Fig.3.5. The center of the π orbitals
will lie below the two upper σ bonds, because the latter have been shifted up by the hybridization
with the s orbitals.

The splitting between the π orbitals will be smaller than that of the σ orbitals, because the latter
point towards each other and therefore have a larger overlap and Hamilton matrix element.

The order of the orbitals is not completely unique and,in particular, the σ-p-bond and π-bond can
interchange as one goes through a period in the periodic table.

π

σ

σ

σ

σ

π

∗

∗

∗

Fig. 3.5: Schematic energy level diagram of a main group dimer
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3.5 Parameterized Hamiltonian of the main group dimer

In the following I will demonstrate the consequences of theses steps on a parameterized Hamiltonian.
Such a Hamiltonian in its symmetrized form allows us to diagonalize the remaining blocks of the
Hamiltonian.

3.5.1 Notion of σ, π, δ-states

The states of a dimer are classified according to σ and π states. This notation is analogous to
the naming convention of atomic orbitals as s, p, d, f -states. The notation defines the main angular
momentum. The σ, π, δ notation refers to the angular momentum about the bond axis.

• A state that is rotationally symmetric is called a σ-state. A sigma state has the angular
momentum quantum number is m = 0 for rotation about the bond axis.

• A state that changes its sign twice when moving in a circle about the bond axis is a π state.
A π-state has the angular momentum quantum number is m = 1 for rotation about the bond
axis.

• A state that changes its sign two times, when moving in a circle about the bond axis, is a
δ-state. A δ-state has the angular momentum quantum number is m = 2 for rotation about
the bond axis.

The notation carries a meaning beyond that of symmetry. σ bonds and anti-bonds are typically
the strongest. The π-bonds are weaker and the δ-bonds are nearly negligible.

Antibonding orbitals are distinguished from the bond-orbitals by a star such as σ∗, pronounced
“sigma-star” . The best is to inspect figure 3.5.

3.5.2 Slater-Koster tables

Slater and Koster[2] have formed the basis of today’s empirical tight-binding methods2. They
showed that if one knows the matrix elements of Hamilton and overlap matrix for certain symmetric
combinations along a bond, the Hamiltonian and overlap matrix can be built up easily using their
Slater-Koster tables[2]. If the matrix elements are furthermore known as function of distance one
can also investigate the changes of the electronic structure, respectively estimate the forces.

3.5.3 Hopping matrix elements of Harrison

Harrison (“The physics of solid state chemistry”, Walter A. Harrison, Advances in Solid state Physics
17, p135)[?] has shown that the matrix elements can be reasonably fit by simple expressions. He
has chosen the orbital energies equal to the atomic energy levels obtained with the Hartree Fock
approximation. For the hopping matrix elements he found the following expressions, where d is the
interatomic distance.

tssσ = 1.40
~
2

md2

tspσ = −1.84
~2

md2

tppσ = −3.24
~2

md2

tppπ = 0.81
~2

md2

2The kind of empirical models, where only nearest neighbor matrix elements of Hamiltonian are considered, and
overlap is set to unity is called tight binding models. However the definition is not clear cut and there are many variants
and extensions that run with the same name.
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h!

ddδddπ

ddσ

ss σ

spσ

sdσ

ppσ

pdσ

pdπ

ppπ

Fig. 3.6: Non-vanishing tight-binding matrix elements along a bond and their naming.

The parameters can be derived by fitting the free electron bands with tight-binding matrix elements,[7].
The constants are structure dependent.

Further reading can be found in [8, 9].

3.5.4 Parameterized Hamiltonian of the main group dimer

I will demonstrate how to parameterize a Hamiltonian and how to work out the energy levels in terms
of these parameters. I will use the example of a dimeric molecule as an example.

Let us first consider the energies of the orbitals

ǭs = 〈a, s|Ĥ|a, s〉 = 〈b, s|Ĥ|b, s〉
ǭp = 〈a, px |Ĥ|a, px 〉 = 〈a, py |Ĥ|a, py 〉 = 〈a, pz |Ĥ|a, pz 〉
= 〈b, px |Ĥ|b, px 〉 = 〈b, py |Ĥ|b, py 〉 = 〈b, pz |Ĥ|b, pz〉

Usually one thinks here of the atomic orbitals.
For the off-site terms, we will use the, admittedly rather crude, approximations of choosing

the Hamilton matrix elements proportional to the overlap matrix elements and then to ignore the
deviations from orthonormality. Due to the rotational symmetry about the molecular axis, only certain
matrix elements are nonzero. This rotational symmetry is another simplifying assumption.

tssσ = 〈a, s|Ĥ|b, s〉
tspσ = 〈a, s|Ĥ|b, px 〉
tppσ = 〈a, px |Ĥ|b, px 〉
tppπ = 〈a, py |Ĥ|b, py 〉 = 〈a, pz |Ĥ|b, pz 〉
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If we describe the states as a vector with basisstates in the order (|a, s〉, |a, px 〉, |a, py 〉, |a, pz〉,
|b, s〉, |b, px 〉, |b, py 〉, |b, pz〉), the Hamilton matrix has the form

H=̂

















ǫs 0 0 0 tssσ tspσ 0 0

0 ǫp 0 0 −tspσ tppσ 0 0

0 0 ǫp 0 0 0 tppπ 0

0 0 0 ǫp 0 0 0 tppπ

tssσ −tspσ 0 0 ǫs 0 0 0

tspσ tppσ 0 0 0 ǫp 0 0

0 0 tppπ 0 0 0 ǫp 0

0 0 0 tppπ 0 0 0 ǫp

















(3.13)

Now we can work out the Hamiltonian in the basis of eigenstates of the three symmetry planes,
namely

















|φ1〉
|φ2〉
|φ3〉
|φ4〉
|φ5〉
|φ6〉
|φ7〉
|φ8〉

















=


















1√
2
(|a, s〉+ |b, s〉)

1√
2
(|a, px 〉 − |b, px 〉)
1√
2
(|a, s〉 − |b, s〉)

1√
2
(|a, px 〉+ |b, px 〉)

1√
2
(|a, pz 〉+ |b, pz〉)

1√
2
(|a, pz 〉 − |b, pz〉)

1√
2
(|a, py 〉+ |b, py 〉)

1√
2
(|a, py 〉 − |b, py 〉)


















(3.14)

This can be done in two ways, which I demonstrate for one example, namely the matrix element
between 〈φ1| := 1√

2
(〈a, s|+ 〈b, s|) and |φ2〉 := 1√

2
(|a, px 〉 − |b, px 〉)

• We can represent the bra by a vector ~c1 = (1, 0, 0, 0, 1, 0, 0, 0) 1√2 and the ket by the vector

~c2 = (0, 1, 0, 0, 0,−1, 0, 0) 1√2 , so that

〈φ1| =
8∑

i=1

〈φ1|χi 〉〈χi | =
8∑

i=1

c∗i ,1〈χi |

|φ2〉 =
8∑

i=1

|χi 〉〈χi |φ2〉 =
8∑

i=1

|χi 〉ci ,2

Now we multiply the Hamilton matrix from Eq. 3.13, which has elements 〈χi |Ĥ|χj 〉, with ~c∗1
from the left and with ~c2 from the right, which yields

〈φ1|Ĥ|φ2〉 =
1

2
(−tspσ − tspσ) = −tspσ

• As an alternative we can also directly decompose the matrix elements of the symmetrized states
into those of the original (not symmetrized) basis orbitals.

[
1√
2
(〈a, s| + 〈b, s|)

]

Ĥ

[
1√
2
(|a, px 〉 − |b, px 〉)

]

=
1

2




〈a, s|Ĥ|a, px 〉
︸ ︷︷ ︸

0

−〈a, s|Ĥ|b, px 〉
︸ ︷︷ ︸

tspσ

+ 〈b, s|Ĥ|a, px 〉
︸ ︷︷ ︸

−tspσ

−〈b, s|Ĥ|b, px 〉
︸ ︷︷ ︸

0






= −tspσ
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In the basis of symmetry eigenstates from Eq. 3.14, the Hamiltonian obtains its block-diagonal
form with two 2 × 2 blocks and and six eigenstates. The elements of this Hamilton matrix are
〈φi |Ĥ|φj〉.

Ĥ=̂

















ǫs + tssσ −tspσ 0 0 0 0 0 0

−tspσ ǫp + tppσ 0 0 0 0 0 0

0 0 ǫs − tssσ tspσ 0 0 0 0

0 0 tspσ ǫp − tppσ 0 0 0 0

0 0 0 0 ǫp + tppπ 0 0 0

0 0 0 0 0 ǫp − tppπ 0 0

0 0 0 0 0 0 ǫp + tppπ 0

0 0 0 0 0 0 0 ǫp − tppπ

















Note that the Hamilton matrix here differs from the one given previously, because its is represented
in a different basis namely the symmetrized orbitals φj 〉 as opposed to the original basis states |χα〉.
The basis set plays the role of a coordinate system. Like the components of a vector, also the matrix
elements of a tensor depend on the choice of the coordinate system.

3.5.5 Diagonalize the sub-blocks

The subblocks can be diagonalized. We use the approximate expression Eq. 2.18 for the non-degerate
two-center bond with |t| < |ǫ1 − ǫ2|. The modifications of the orbitals are demonstrated in Fig. 3.3
on p. 37.

• For the first block containing the ssσ and ppσ bonding orbitals we obtain the energies

ǫ− ≈ ǫs + tssσ −
|tspσ|2

ǫp − ǫs + tppσ − tssσ

ǫ+ ≈ ǫp + tppσ +
|tspσ|2

ǫp − ǫs + tppσ − tssσ
– The lower of the two states will have a character of a ssσ bond, however with a contri-

bution from the ppσ bond mixed in such that the electrons are further localized in the
bond.

– The higher lying state will have a character of a ppσ bond, bit now the ssσ orbital is
mixed in such that the electron density in the bond is depleted.

• For the second block containing the ssσ and ppσ antibonding orbitals we obtain the energies

ǫ− ≈ ǫs − tssσ −
|tspσ|2

ǫp − ǫs + tppσ − tssσ

ǫ+ ≈ ǫp − tppσ +
|tspσ|2

ǫp − ǫs + tppσ − tssσ
– The lower of the two states will have a character of a ssσ antibond, however with a

contribution from the ppσ antibond mixed in such that the electrons are less localized in
the bond. The state becomes less antibonding, which lowers its energy.

– The higher lying state will have a character of a ppσ antibond, bit the ssσ orbital is
mixed in such that the electron density in the bond is enhanced, making the state more
antibonding, which shifts it up in energy.

The π type orbitals are already eigenstates, namely the bonding and antibonding states shown in
Fig. 3.4.
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3.6 Stability of main group dimers

From the qualitative arguments we would not be able to say if the σ-state in the middle is below or
above the π states. From the node counting, we would expect the σ-state to lie above the pi states,
because the latter have only one node plane, while the σ state has two. I believe that the reason is
that a small perturbation such as an electric field perpendicular to the bond axis would deform the
orbitals such that the two node planes would join and form one connected node plane.

The little diagram tells us already a lot about stability.

1. for alkali metal dimers such as Li2, Na2 etc. we expect a reasonably strong bond. The bonding
is analogous to that in the hydrogen molecule.

2. On the other hand we expect Be2 Mg2 to be marginally stable, because there is one σ-bond
and one σ∗-anti-bond, which largely cancel their effect. There will be some bonding though,
because the σ-p orbitals mix into the lowest two states and thus stabilize them.

3. For the dimers B2, Al2, there will again be a net σ bond. Thus we expect its bonds to be clearly
stronger than that of the dimers of the di-valent atoms.

4. Then we arrive at C2 and Si2 where the four lowest orbitals are occupied. Since we have two
partially occupied degenerate orbitals, we need to be careful about spin-polarization. C2 is a
difficult molecule, because the ordering of π bonds and σ bond depends on the distance. When
the σ bond is occupied, the system will have a net magnetic moment, because the two electrons
can align their spins according to Hund’s rule. When the σ orbital is unoccupied, the system
will have a π double bond.

5. Now we come to the most stable ions such as N2. Dinitrogen actually forms a triple bond. It
consists of the two degenerate bonding π orbitals one one net σ bond. Dinitrogen is so non-
reactive that it is often used to package food to avoid oxidation. Even though the atmosphere
consists of 70% of nitrogen molecules, we need to supply nitrogen compounds in the form of
fertilizer, to allow the excessive plant growth required for agriculture. Only some bacteria are
able to transform dinitrogen to a form that can be metabolized.

6. Now we come to the chalcogenides3 such as O2 and S2. Oxygen has two electrons in the π∗

orbitals. Thus its net bonding corresponds to a double bond. However, it is stabilized by Hund’s
rule. The two electrons in the π∗ states are spin paired. Thus O2 has a net magnetic moment
and a triplet spin splitting.That is if we apply a magnetic field, we will see three absorption
lines.

7. The halogen dimers are again only weakly bond. They have a net σ bond, but all the gain from
π bonding is compensated by the π∗ anti-bonds.

8. The Nobel gases do not bind, because all bonding orbitals are compensated with anti-bonding
orbitals.

3.7 Bond types

• σ-bond. The wave function of a sigma bond is approximately axially symmetric. An example is
the bond in the H2 molecule.

• π-bond. A π bond has a node plane parallel to the bond axis. An example are two p orbitals
which stand perpendicular to the bond axis. It is weaker than a σ bond because the orbitals

3chalcogenide is spelled with a hard “ch” such as in “chemistry”. Chalcogenides are oxides, sulfides, selenides,
tellurides, that is compounds of the oxygen group. Oxides alone are not named chalcogenides unless grouped together
with one of the heavier elements.
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do not point towards each other resulting in smaller matrix elements. An example is the planar
molecule ethene (C2H2), where two p-orbitals on the carbon atom combine in a π bond in
addition to the σ-bond

• Double bond is typically a π bond combined with a σ bond. The example is again ethene.

• A triple bond is two π-bonds combined with a single bond. An example is N2.

• Three-center bond involves three orbitals in a row. A simple example is the hypothetical linear
H3 molecule. It forms a fully bonding orbital, a non-bonding orbital, to which the center atom
does not contribute, and a fully anti-bonding orbital. The three center bond plays a role for
five-valent atoms such as P . Such atoms form trigonal bi-pyramids. There are three equatorial
sp2 orbitals and a three-center bond along the z-axis.

• The best example for an aromatic bond is benzene (germ.:Benzol nicht Benzin!). It has the
formula unit C6H6. The carbon form a six-fold ring. After we formed the sigma bonds there
are six electrons available to form three double bonds. There are however not three double
bonds and three single bonds but all the bond lengths are symmetric.

The wave function is best constructed from symmetry arguments

|Ψn〉 =
∑

j

|χj 〉e−2πi
nj
6

√

1

6

where the χi are the pz orbitals on the individual carbon atoms. The Hamilton matrix has the
form Hi ,i = ǭ and Hi ,i+1 = Hi−1,i = −t.

The energies are ǫn = ǭ+ t(e2πin/6+e−2πin/6) = ǫn = ǭ−2t cos 2πn/6. Thus there is the fully
symmetric ground state at ǭ − 2t. Then there are two degenerate occupied states at ǭ − t,
two degenerate unoccupied states at ǭ+ t and a fully anti-bonding state at ǭ+ t

3.8 Worked example: orbitals of the ethene

The molecule ethene, also called ethylene, has the formula unit C2H4 and forms a planar structure,
where each carbon atom has two bonds to hydrogen and one to the other carbon atom with a bond
angle of approximately 120◦.

Select Basisset

First we decide which orbitals we wish to include in the basis. We use the relevant orbitals, which
are the four hydrogen s-orbitals, and the s- and p-orbitals on carbon. That is we work with twelve
basis functions.
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Determine symmetry operations

A
B

C

H

HH

H
C C

We begin determining the symmetry operators of methane.

• A mirror plane in the molecular plane. (C)

• A mirror plane perpendicular to the C-C bond (A)

• a mirror plane containing the bond but perpendicular to the molecular plane (B)

• a two fold rotation about the bond axis

Determine symmetrized orbitals

• We start with the symmetry plane (A), perpendicular to the bond and determine the symmetric
and antisymmetric orbitals.

A+

A−

A+B+

A+B−

A−B−

A−B+
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A+B+C+

A+B+C−

A+B−C+

A−B+C+

A−B−C+

A−B−C−

Form bond orbitals

We ended up with two 1 × 1 blocks, two 2 × 2 blocks and two 3 × 3 blocks of the Hamiltonian.
Because the 3 × 3 blocks are difficult to handle, we form bonding and antibonding orbitals between
the hydrogen orbitals and the carbon-p-orbitals, which are energetically in a similar position.

A+B+C+

A+B+C−

A+B−C+

A−B+C+

A−B−C+

A−B−C−

Now we can align the orbitals on an energy axis. Without a proper diagonalization this step can
be nothing more than an educated guess. However it usually is sufficient to determine which orbitals
are occupied and which are empty. Furthermore we can usually guess, which are the highest occupied
and the lowest unoccupied orbitals, which is important for chemical considerations. We order the
orbitals according to the bonding character. We place the s-orbitals on carbon lowest. Then we place



3 THE USE OF SYMMETRY 47

the bonding orbitals low in energy, and the fully antibonding up. If there is a competition between σ
and π-bonds, the σ bonds dominate.

Difficult is the decision for the two states above the lowest unoccupied state, because there is
a competition between CH-bonds with CC-bonds. We could as well have placed them below the π
antibond. These orbitals can hybridize a little with the carbon s-orbitals, which would place them
higher up on energy, concentrating their weight onto the anti-bonds.
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3.9 Worked example: orbitals of the methane

The molecule methane has the formula unit CH3 and forms a tetrahedron. Let us work out its
eigenstates:

Select Basisset

First we decide which orbitals we wish to include in the basis. We use the relevant orbitals, which are
the four hydrogen s-orbitals, one carbon s-orbital and the three carbon p-orbitals. That is we work
with eight basis functions.

Determine symmetry operations

We begin determining the symmetry operators of methane.

• six mirror planes through a pair of hydrogen and the central carbon atom.

• four three fold axis along a C-H bond.

• six two-fold rotations about any axis through the central carbon and the mid-point between
two hydrogen atoms.

• A rotation about a two-fold axis by 90◦, followed by a mirror plane perpendicular to the axis
passing through the central carbon atom.

Determine symmetrized orbitals

Now we need to select a number of symmetry operators which commutate.. Two transformations
commutate, if we transform an object in sequence by both transformations, and the result is identical
irrespective of the object chosen. For example two reflections with perpendicular mirror planes
commutate. They do not commutate if they have another angle.

Let us start with the rotation by 90◦ followed by a reflection. This operation brings an object
into its original position after it has been applied four times.

C

0 1 2 3 4

A B

D

CB

A

DC

D

C

B A CD

B

A

A B

D

This operation produces the identify after four-fold application. The eigenvalues are therefore
1, i ,−1,−i .

• Let us construct all orbitals for the eigenvalue 1. according to Eq. 3.10.

– We start with one hydrogen orbital on the site A. We transform it once by the symmetry
operation and multiply with the eigenvalue, namely 1, which results in a hydrogen orbital
with the same sign on site D. We take this orbital, apply the symmetry operation again
and obtain, after multiplication with 1, an orbital at site B . The third operation produces
an orbital at site B. We add the four orbitals together, and obtain the orbital shown in
Fig. 3.7.
We see immediately, that we obtain the same orbital, irrespective of which orbital we
started out from.
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– Now we proceed with the s-orbital on the carbon atom. This orbital falls on itself after
each transformation. Since its copies are multiplied with 1, the orbital remains unchanged.

– Next we proceed to the p-orbitals. Because the pz orbital changes its sign after each
transformation, its copies add to zero. The px and py orbitals change their sign after
every two operations and therefore also cancel out.

In total we obtain exactly two symmetrized orbital with eigenvalue 1 of the symmetry operation.

• We proceed to eigenvalue −1.
– We begin again with a hydrogen orbital. After each transformation we need to multiply

the orbital with −1. Thus the orbital enters with a positive sign on sites A and B and
with negative sign on sites C and D. After adding up we obtain the symmetrized orbital
shown in Fig. 3.7 in the box with eigenvalue −1.

– the carbon s orbital does not produce a symmetrized orbital in this class, because its copy
add up to zero after multiplication with the factors 1 and −1.

– The pz orbital is a symmetry orbital in this class, because the symmetry operation simply
reverts its sign. After multiplication with the eigenvalue, namely −1, we obtain the original
orbital.

– the px and py orbitals are rotated by 90◦ in each operation. That is, after two operations,
they revert their sign. After two operations we need to multiply with the square of the
eigenvalue. Thus the copies of the orbitals cancel each other, and do not contribute to
this symmetry class.

Also in this class we obtain exactly two orbitals.

• Now we proceed to the complex valued eigenvalue i .

– We start with an s orbital and obtain two real-valued orbitals with opposite sign on the
upper two atoms, and two imaginary-valued orbitals with opposite sign on the lower two
hydrogen atoms. Thus the symmetrized orbital is complex valued.

– the s-orbital on carbon cancels out, because it falls on itself unter the operation and
i + i2 + i3 + i4 = i − 1− i + 1 = 0.

– Also the pz orbital cancels out, because it changes it sign and i − i2 + i3 − i4 = 0.
– the px and py orbitals are transformed into each other by the symmetry operation. From
px we obtain a symmetrized orbital 1√

2
(|px 〉+ i |py 〉). The py orbital produces the same

symmetrized orbital with an additional factor i . Note, that this orbital is en eigenstate to
L̂z with eigenvalue m = 1.

• for the eigenvalue −i , we obtain the same symmetrized orbitals as for the eigenvalue i , only
that the orbitals are complex conjugate.

Thus we have divided the 8× 8 Hamiltonian in four 2× 2 blocks.

Form bond and antibonding orbitals

Next we diagonalize the 2× 2 blocks of the Hamiltonian expressed by symmetrized orbitals and thus
obtain bonding and antibonding orbitals.

In order to align the orbitals on an energy axis we need to know the energies and hopping matrix
elements. Because the carbon s-orbital lies energetically below the carbon p-orbital, we can conclude
that the average value of the bonding and antibonding orbitals that contain the carbon s-orbital lies
below that of the p-orbitals. Furthermore we recognize that the type and number of interactions
for all bonding orbitals containing the carbon p-orbital is the same. Thus we conclude that they are
degenerate. The same holds true for the corresponding antibonding orbitals. This leads us to the
schematic assignment of the electron states of methane shown in Fig. 3.9.
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i1

−1 −i

Fig. 3.7: Symmetrized orbitals of methane. The numbers refer to the eigenvalue of the symmetry
operation, namely a fourfold rotation about a vertical axis combined with a mirror operation about
the horizontal mid-plane. The golden and green lobes have values +1 and −1, and the bright yellow
and cyan lobes have values +i and −i respectively. .

−1

i1

−i

Fig. 3.8: Bonding and antibonding orbital, according to symmetry class. .

3.10 Worked example: orbitals of the allyl ion

let us work out the molecular orbitals of the allyl anion C3H−5 .

C C
C H

HH

H

H

The allyl ion is a planar molecule.

• First we work out the symmetry operations of the molecule. The molecule has the following
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Fig. 3.9: Symmetry eigenstates and energy level ordering of methane. The blue and bright-yellow
lobes correspond to the imaginary part of the wave function. The imaginary part can be avoided by
a suitable superposition of the two wave functions that are complex conjugate of each other. While
the resulting states are still eigenstates of the Hamilton operator, they are no more eigenstates of
the symmetry operators. .

symmetry operations.

– a mirror plane in the plane of the molecule

– a mirror plane perpendicular to the molecular plane, containing the central C-H bond.

– a two-fold rotation about an axis through the central C-H bond.

• Now we work out the symmetrized orbitals. We start with every “atomic” orbital and construct
the symmetrized orbital according to Eq. 3.10 by adding the orbitals obtained from the first
by applying the symmetry operation repeatedly and multiplication with the eigenvalue of the
symmetry operation to the corresponding power.



52 3 THE USE OF SYMMETRY

A B
H−s C−s C−p

• We check the number of symmetrized orbitals, which must be identical to the number of
orbitals we started from: There have been 5 hydrogen s-orbitals, 3 carbon s-orbitals and 9
carbon p-orbitals, that is in total 17 orbitals. We also have 17 symmetrized orbitals.

• Since we ended up with sub blocks of the Hamiltonian of up to eight orbitals we need to
go a step further. We use an approximate symmetry of the CH2 end groups and determine
symmetrized orbitals for these fragments. We are careful not to mix states from different
symmetry classes of the entire molecule, in order to avoid destroying the block-diagonalization
of the Hamiltonian reached so far.

– We determine the symmetry groups of the end group.

–

• now we compose again the symmetrized orbitals with the locally symmetrized end groups

A B

• We notice that there are only few orbitals that still interact with each other, if we ignore the
weak interactions of orbitals pointing away of each other. We diagonalize the last few 2 × 2
matrices and thus obtain an approximate idea of the eigenstates.
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A B

• We divide the orbitals into bonding and antibonding orbitals. This is not necessarily as straight-
forward as in this case. Then we count the number of valence electrons, which is 18, resulting
in 9 filled orbitals.We fill up the bonding orbitals first, proceeding to the non-bonding orbitals.
We find that the non-bonding π orbital is the highest occupied orbital.

A B

The wave functions calculated from first principles are shown below in figure 3.10. We recognize
good agreement for some of the wave functions and poor agreement for others. We have been able
to identify the highest occupied orbital. We also recognize that the main character of the states is
similar in our estimated orbitals and the ab-initio wave functions.

The main error is that states lying in a similar energy region are hybridized incorrectly: That is
a superposition of those states from our estimate would allow us to construct the true eigenstates.
The limitations of the above procedure are not untypical. Like in this case, however, they usually do
not strongly affect stability considerations. The reason behind this is that a unitary transformation of
completely filled or of completely empty states does not affect the energy. If the intermixing between
filled and occupied orbitals would be equally undetermined, the results would not be reliable, and one
should resort to ab-initio calculations.

3.11 Exercise: sketch orbitals

• sketch wave functions and energy level diagram for a water molecule. The water molecule H2O
has a bond angle of about 104◦. The hydrogen orbitals are located slightly above the oxygen
p orbitals.

• The cyclopentadienyl ion has the formula [C5H5]−. It is a five-membered ring. Work out first
the orbitals for one bead and use then the knowledge about eigenstates for ring systems.

• sketch the wave functions of ethene (ethylene) C2H4.
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Fig. 3.10: PAW calculation of the one-particle orbitals of the allyl ion. The highest state shown is
mostly localized in the vacuum.



Chapter 4

From bonds to bands

So far we have employed a local picture of bonding. In solid state physics another viewpoint became
popular, based on the concept of reciprocal space and band structures.

In order to approach the concepts in a simple way we again choose a simple model system, namely
the jellium model.

4.1 The Jellium model

For the electron gas the model system is the free electron gas or the jellium model. The jellium
model consists of electrons and a spatially constant, positive charge background, which ensures that
the overall system is neutral.

Because of translational symmetry, the potential is spatially constant. Thus the one-particle
states are simply plane waves.

φ~k,σ(~r , σ
′) =

1√
Ω
ei
~k~rδσ,σ′ (4.1)

We consider here states in a very large, but finite, volume Ω such as the universe. The states are
normalized to one within this volume.

This is an unusual notation for an ideally infinite system. Using this notation we avoid having to
distinguish diskrete and continuous sections of the spectrum and different normalization conditions
for localized and extended states. A disadvantage is that extended states have a nearly vanishing
amplitude, and that the spacing in k-space is extremely small. For a finite volume, only discrete values
for ~k are allowed. We will later see that in the final expression the factors Ω from the normalization
can be translated into a volume element in k-space, so that the sums can be converted into integrals.

The dispersion relation of free electrons forms a parabola

ǫ~k,σ = V0 +
(~k)2

2me

where V0 is the value of the potential.
The jellium model approximates real metals surprisingly well, even though the potential of the

nuclei is far from being a constant. In a hand-waving manner we can say that the valence electrons are
expelled from the nuclear region by the Pauli repulsion of the core electrons, so that they move around
in a region with fairly constant potential. The true story is a little more subtle though... In Fig. 4.1
the band structure of free and non-interacting electron gas is shown in a unit cell corresponding to
alumina and compared to the calculated band structure of alumina. We can see that the free electron
gas already provides a fairly good description of some realistic systems.

55
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Fig. 4.1: Band structure of free, non-interacting electrons. The lattice is an fcc-cell with a lattice
constant of 4.05 Åcorresponding to aluminum. The high symmetry points are given in units of 2πalat .
The numbers indicate the degeneracy beyond spin-degeneracy. On the right-hand side, the band
structure of aluminum is shown in comparison.

4.2 Density of States

4.2.1 Motivation

While the dispersion relation contains a wealth of information, that is very important for transport
problems or the interaction of quasi-particles, for many purposes the k-dispersion is not relevant. I
those cases the additional information of the k-dispersion obscures the truely important information.

Thermodynamic potentials such as the free energy can be written, for non-interacting, identical
particles as a sum over energy levels.

〈A〉β,µ =
∑

n

fT,µ(ǫn)〈ψn|Â|ψn〉 =
∫

dǫ fT,µ(ǫ)
∑

n

δ(ǫ − ǫn)〈ψn|Â|ψn〉
︸ ︷︷ ︸

DA(ǫ)

where

fT,µ(ǫ) =

(

1 + e
1

kBT
(ǫn−µ)

)−1

is the Fermi distribution function.

1

0

kBT
ε µ−+

kBT
ε µ−−

kBT
ε µ−−

µ

f
2
1

~1− exp(         ) ~exp(         )

ε

Fig. 4.2: Fermi distribution f (ǫ) = (1 + e
1

kBT
(ǫ−µ)

)−1.
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The density of states separates “thermodynamic information” such as temperature and chemical
potential from the “system intformation” which refers to the energies and matrix elements of individal
states.

One can go one step further and separate out the observable A, if one introduces a local basisset
|χα〉 and corresponding projector functions 〈πα|, that obey the bi-orthogonality condition 〈πα|χβ〉 =
δα,β . For an orthonormal basisset one may choose the projector functions equal to the basis-functions
themselves. For non-orthonormal basissets, the projector functions carry another inverse overlap
matrix. One can verify that

|ψ〉 =
∑

α

|χα〉〈πα|ψ〉 if 〈πα|χβ〉 = δα,β

Insertion into the expression for the expectation value above yields

〈A〉β,µ =
∫

dǫ fT,µ(ǫ)
∑

n

δ(ǫ− ǫn)
∑

α,β

〈ψn|πα〉〈χα|Â|χβ〉〈πβ |ψn〉

=

∫

dǫ
∑

α,β

fT,µ(ǫ)
∑

n

〈πβ |ψn〉δ(ǫ− ǫn)〈ψn|πα〉
︸ ︷︷ ︸

Dβ,α(ǫ)

〈χα|Â|χβ〉

In this way we have managed a division of the expression into

• thermodynamic information, i.e the Fermi distribution function

• system-dependent information, the density of states

Dα,β(ǫ)
def
=
∑

n

〈πβ |ψn〉δ(ǫ− ǫn)〈ψn|πα〉 (4.2)

and the

• observable information, namly the matrix element 〈χα|Â|χβ〉.

Most important is the total density of states, where the operator A is the unit operator.

D(ǫ) =
∑

n

δ(ǫ− ǫn)

Often also projected density of states are used, where the density of states is projected onto a
certain orbital

Dα,α(ǫ) =
∑

n

δ(ǫ− ǫn)〈ψn|χα〉〈χα|ψn〉

In order to investigate bonding one also uses off-diagonal elements of the density of states matrix.
There are several variants: Mulliken’s overlap populations and the Crystal orbital overlap contributions
(COOP) of Hoffman and Hughbanks use the overlap matrix elements A variant more directly related
to the energetics are the and the Crystal Orbital Hamilton Populations (COHP)[10].

COHPα,β(ǫ) = Dα,β(ǫ)〈χβ |Ĥ|χα〉

The energetic information contained in the density of states is important because it provides some
insight into how robust a certain expectation value is against perturbations of the system.
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4.2.2 Density of States for extended systems

For molecules, the total density of states is simply a series of Delta functions. For extended systems
this is no more true, but the density of states becomes a continuous function.

The one-particle density of states can be obtained from the dispersion relation ǫ(p). Independent
particles in a constant potential have a conserved momentum ~p = ~~k . This implies that they can be
described by plane waves

Ψ(~r) =
1√
V
ei
~k~r

Note that even electrons in a periodic potential, that is electrons ins a crystal, have a conserved
momentum. The wave function is not a plane wave, but a plane wave modulated by some periodic,
p dependent function, as seen in the Bloch theorem. These dispersion relations are called band
structure and can be calculated with first-principles calculations. Also lattice vibrations in a crystal
can be classified by their wave vector, resulting in a phonon band structure.

If we consider a system with periodic boundary conditions in a a box with side-lengths Lx , Ly , Lz ,
the states are quantized, so that kiLi = 2πni where ni is an arbitrary integer. Thus there are only
states with ~k = ( 2πLx i ,

2π
Ly
j, 2πLz k), where i , j, k are arbitrary integers. The volume V of the box is

V = LxLyLz .
Thus the density of states is

D(ǫ) =
∑

i ,j,k

δ
(

ǫ(
2π~

Lx
i

︸ ︷︷ ︸

px

,
2π~

Lx
j

︸ ︷︷ ︸

py

,
2π~

Lx
k

︸ ︷︷ ︸

pz

)− ǫ
)

We can attribute to each state a volume in k-space, namely

∆Vk =
2π

Lx

2π

Ly

2π

Lz
=
(2π)3

V
(4.3)

Using the relation ~p = ~~k we can convert this volume into a volume element in momentum space,
namely

∆Vp =
(2π~)3

V
(4.4)

If the size of the box, that is Lx , Ly , Lz , is made very large, the volume element attributed to a single
state in momentum space becomes very small. Thus we can replace the sum by an integral, where
∆Vp is represented by d3p.

D(ǫ) =
V

(2π~)3

∑

i ,j,k

(2π~)3

V
︸ ︷︷ ︸

→d3p

δ
(

ǫ(~pi ,j,k)− ǫ
)

Li→∞=
V

(2π~)3

∫

d3p δ
(

ǫ(~p)− ǫ
)

(4.5)

It is intuitively clear that the expression for the density of states is related to a surface integral
over a surface of constant energy. This will be shown in the following.

In order to transform the expression for the density of states into a surface integral in momentum
space, it is convenient to introduce the number of states N(ǫ).

The number of states is defined as the number of states that lie below the energy epsilon.

N(ǫ) =
∑

i ,j,k

θ(ǫ− ǫ(pi ,j,k)) V→∞=
V

(2π~)3

∫

d3p θ(ǫ− ǫ(~p)) (4.6)
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where θ(x) is the Heaviside function θ(x), which vanishes for x < 0 and is equal to unity for x > 0.
The Heaviside function is related to the δ-function via

θ(x) =

∫ x

−∞
dx ′ δ(x ′) ⇔ ∂xθ(x) = δ(x) (4.7)

This allows us to relate the number of states to the density of states Thus we obtain

∂ǫN(ǫ)
Eq. 4.6
=

V

(2π~)3

∫

d3p ∂ǫθ(ǫ − ǫ(~p))
Eq. 4.7
=

V

(2π~)3

∫

d3p δ(ǫ − ǫ(~p))
Eq. 4.5
= D(ǫ) (4.8)

Here we show how the volume integral with the delta function can be converted into a surface
integral.

D(ǫ)
Eq. 4.8
= ∂ǫN(ǫ) = lim

∆→0

V

(2π~)3

∫

d3p
θ(ǫ+ ∆− ǫ(p))− θ(ǫ− ǫ(p))

∆
︸ ︷︷ ︸

→δ(ǫ−ǫ(p))

py

e(p)>e+∆

nd

e(p)<e

px

The integral over the difference of the two Heaviside function corre-
sponds to the volume of a volume sheet, which is enclosed by the sur-
faces defined by ǫ(~p) = ǫ and ǫ(~p) = ǫ+ ∆.
Let us calculate the distance of two points on the two surfaces. Let
us pick one point ~p0 on the surface defined by ǫ(~p) = ǫ. The closest
neighbor on the other surface ~p1 lies opposite to ~p0, that is ~p1 = ~p0+~n·d ,
where d is the distance of the points and ~n = 1

|~∇pǫ|
~∇pǫ is the normal

vector of the surface. ~p1 lies on the other surface and therefore fulfills

ǫ(~p1) = ǫ
︸︷︷︸

ǫ(~p0)

+∆

⇒ ǫ(~p0) + ∆ = ǫ(~p0 + ~n · d) Taylor= ǫ(~p0) + ~n · d ~∇pǫ+O(d2)

⇒ d =
∆

~n~∇pǫ
=

∆
~∇pǫ
|~∇pǫ|

~∇pǫ
=
∆

|~∇pǫ|

Thus we obtain the thickness d of the sheet. Note that the thickness
depends on the position on the sheet. The volume element of the sheet
can then be written as d3p = dA · d
Thus we can write the volume as

D(ǫ) =
V

(2π~)3

∮

d2Ap
1

|∇pǫ|

Thus we obtain the density of states from the dispersion relation as
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ONE-PARTICLE DENSITY OF STATES PER VOLUME

g(ǫ)
def
=
1

V
D(ǫ) =

∫
d3p

(2π~)3
δ (ǫ− ǫ(~p)) = 1

(2π~3)

∮

d2Ap
1

|~∇pǫ(p)|
(4.9)
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Note that ~∇pǫ(p) is the velocity (group-velocity) of the particle.
This follows from Hamilton’s equation ẋi =

∂H(~p,~x)
∂pi

. It also fol-
lows from the expression of the group velocity of a wave packet
vi =

∂ω(~k)
∂ki
= ∂ǫ(~p)

∂pi
.

Thus the density of states is proportional to the area of a con-
stant energy surface and inversely proportional to the mean ve-
locity of the particles at the constant energy surface. Thus, flat
bands, which correspond to slow particles have a large contribu-
tion to the density of states. Steep bands, which are related to
fast particles, contribute little to the density of states at a given
energy, but they contribute over a large energy range.

In the following we will calculate the density of states of two model systems the free particle with
and without mass.

4.2.3 Free particle density of states with mass

The dispersion relation of a particle with mass is

ǫ(p) =
p2

2m

The density of states is obtained exploiting the fact that |~p| is constant on a surface of constant
energy

D(ǫ) =
V

(2π~)3

∮

dA
1

|∇pǫ|
=

V

(2π~)3
4πp2
︸ ︷︷ ︸
∫
dA

1

|~p|/m

|p|=
√
2mǫ
=

V

(2π~)3
4π(
√
2mǫ)2

1√
2mǫ/m

= 2πV

(√
2m

2π~

)3√
ǫ (4.10)

One should remember that the density of states has a square-root behavior in three dimensions. Note
however that two-dimensional particles such as a 2-dimensional electron gas has a radically different
density of states. A one-dimensional particle, such as an electron in a one-dimensional conductor has
a density of states proportional to 1√

ǫ
, a particle moving in two dimensions has a density of states

which is constant.
This model is important to describe the behavior of states at band edges. For example the electron

states of a semiconductor at both sides of the Fermi level are the ones relevant for the electric and
thermodynamic properties of a semiconductor. When we approximate the band about the minimum
to second order, we obtain an approximate dispersion relation

ǫ(p) = ǫc +
1

2
(~p − ~p0)m∗−1(~p − ~p0)

where ǫc is the conduction band minimum, ~p0 is the momentum of the minimum and m∗ is the
effective mass tensor. m∗ is nothing but the inverse of the second derivatives of ǫ(~p) at the band



4 FROM BONDS TO BANDS 61

edge. It is important to note that the effective mass can be a tensor. Furthermore there may be
several degenerate minima, so that one obtained different types of conduction electrons.

Similarly we can expand the top of the valence band to quadratic order about the minimum. These
are the hole bands. The mass is negative. Since it is a missing electron that conducts, the hole has
also a negative charge. The hole is conceptually analogous to the antiparticle of the electron, the
positron. It is quite common that concepts from elementary particle physics carry over into solid
state physics. In the latter however the phenomena can be observed at much lower energies and put
into practical use.

Interesting is also the behavior in lower dimensions

Dd(ǫ) =

(√
2mL

2π~

)d

Sdθ(ǫ)ǫ
d
2
−1 =







√
2mL
2π~ 2θ(ǫ)ǫ

− 1
2 for d = 1

(√
2mL
2π~

)2

2πθ(ǫ)ǫ for d = 2
(√

2mL
2π~

)3

4πθ(ǫ)ǫ
1
2 for d = 3

(4.11)

where Sd = 2d
d
2 /Γ( 12d), that is S1 = 2, S2 = 2π, S3 = 4π, is the surface area of a unit sphere in

d dimensions and Γ(x) is the Gamma function <(http://mathworld.wolfram.com/Hypersphere.
html). θ(x) is the Heaviside step function which vanishes for negative arguments and equals unity
for positive arguments.
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Fig. 4.3: Density of states for particles with and without mass, that is with linear and parabolic
dispersion in one, two and three dimensions

4.2.4 Free particle density of states without mass

Mass-less particles are used to describe, for example, the acoustical branch of phonons (lattice
vibrations). It can also used to describe electrons in a metal: In thermodynamics only the electrons
near the Fermi level are of relevance, so that the band structure ǫ(k) can be approximated in this
region by a linear dispersion relation. Another example where the dispersion relation is linear is light,
i.e. photons.
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The dispersion relation of a particle without mass is

ǫ(p) = c |~p|

where c is the speed of light, if we discuss photons, or the speed of sound if we discuss phonons,
that is lattice vibrations. For metals c is called the Fermi velocity.

The density of states is obtained exploiting the fact that |~p| is constant on a surface of constant
energy

Dd(ǫ) =

(
L

2π~c

)d

Sdθ(ǫ)ǫ
d−1 =







L
2π~c 2θ(ǫ) for d = 1
(

L
2π~c

)2

2πθ(ǫ)ǫ for d = 2
(

L
2π~c

)3

4πθ(ǫ)ǫ2 for d = 3

(4.12)

4.3 Real and reciprocal lattice

g1

g2

Fig. 4.4: Illustration of the Brillouin zone and high-symmetry points for a plane hexagonal lattice.
On the left the unit cell of the reciprocal lattice is shown. On the right the Brillouin zone is shown,
which consists of all points that are closer to one lattice point than to any other. In the Brillouin
zone there is the irreducible zone, which contains all points that are symmetry inequivalent. The
corners of the irreducible zone are high-symmetry points.

Most solids are crystals. This implies that the atoms are located on regular positions. The clearest
evidence of this regular arrangement are the crystal faces of gem stones. This arrangement results in
a symmetry, the lattice periodicity. Lattice translation symmetry is a discrete translational symmetry.

4.3.1 Real and reciprocal lattice: One-dimensional example

Let us consider a linear chain of hydrogen atoms as the most simple model of a one-dimensionally
periodic crystal of hydrogen atoms shown in Fig. 4.5. It is a model system, which is not stable in
reality. However it allows to develop the concepts.
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T a

Fig. 4.5: Linear chain of hydrogen atoms. The lattice spacing is a. The balls represent the atoms.
The graph sketched below represents the potential as function of position. The primitive lattice
vector is ~T which has the length a. The primitive reciprocal lattice vector has the length 2π/a.

The periodicity of the chain implies that for every atom at position ~R0 there are also equivalent
atoms at the positions ~Rn = ~R0 + n~T , where n is any integer. ~T is the primitive lattice vector.
General lattice vectors are ~tn = n~T . The primitive lattice vector is the smallest possible lattice
vector, that fully describes the lattice periodicity. Its length is called the lattice constant a.

Not only the atomic positions are regular, but also the potential is periodic, that is v(~r + ~tn) =
v(~r). A periodic potential has a discrete Fourier transform

v(~r) =
∑

n

ei
~Gn~rVn

where the vectors ~Gn = n~g are the general reciprocal lattice vectors. The primitive reciprocal
lattice vector is denoted by ~g. The length of the primitive reciprocal lattice vector is inversely
proportional to the real-space lattice constant a, that is |~g| = 2π

a

4.3.2 Real and reciprocal lattice in three dimensions

Let us now generalize the expressions to three a three-dimensional lattice. Fig. 4.3.2 demonstrates
the concepts developed in the following. Corresponding to the three spatial directions there are now
three primitive lattice vectors, which we denote by ~T1, ~T2, ~T3. Note that in two or three dimensions
there is no unique choice of primitive lattice vectors. The three primitive lattice vectors span the
primitive unit cell.

A general lattice vector ~ti ,j,k can be expressed by the primitive lattice vectors ~T1, ~T2, ~T3 as

~ti ,j,k = i ~T1 + j ~T2 + k~T3=̂






Tx,1 Tx,2 Tx,3

Ty,1 Ty,2 Ty,3

Tz,1 Tz,2 Tz,3






︸ ︷︷ ︸

T






i

j

k






where i , j, k are arbitrary integers.
It is often convenient to combine the lattice vectors into a 3×3 matrix T as shown above. Often

the atomic positions ~Rn are provided in relative positions ~X which are defined as

~Rn = T ~Xn ⇔ ~Xn = T
−1 ~Rn

A potential is called periodic with respect to these lattice translations, if V (~r + ~ti ,j,k) = V (~r).
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RECIPROCAL LATTICE

The reciprocal lattice is given by those values of the wave vector ~G, for which the corresponding
plane waves ei ~G~r have the same periodicity as the real-space lattice.
The primitive reciprocal-lattice vectors ~gn for n = 1, 2, 3 are defined in three dimensions as

~gn~Tm = 2πδn,m (4.13)

Thus, in three dimensions the reciprocal lattice vectors can be obtained as

~g1 = 2π
~T2 × ~T3

~T1

(

~T2 × ~T3
) , ~g2 = 2π

~T3 × ~T1
~T1

(

~T2 × ~T3
) , ~g3 = 2π

~T1 × ~T2
~T1

(

~T2 × ~T3
)

It is easily shown that these expressions fulfill the defining equation Eq. 4.13 for the reciprocal lattice
vectors. Note that the expressions for the second and third lattice vector are obtained from the first
by cyclic commutation of the indices.

Because the vector product is perpendicular to the two vectors forming it, every reciprocal lattice
vector is perpendicular to two real-space lattice vectors. This brings us to the physical meaning of
the reciprocal lattice vectors: Two real space lattice vectors define a lattice plane. A plane can be
defined either by two linearly independent vectors in the plane or alternatively by the plane normal.
The reciprocal lattice vectors apparently define lattice planes, because they are plane normals.

Let us now consider the distance ∆n of two neighboring lattice planes. It is obtained by projecting
one vector pointing ~Tn from one plane to the other onto a normalized plane normal ~gn/|~gn|.

∆n = ~Tn
~gn
|~gn|

Eq. 4.13
=

2π

|~gn|

⇒ |~gn| =
2π

∆n

PHYSICAL MEANING OF RECIPROCAL LATTICE VECTORS

• The reciprocal lattice vectors are perpendicular to the lattice planes of the real-space lattice.

• The length of the primitive reciprocal lattice vectors is 2π divided by the distance of the lattice
planes.

We can form a 3× 3 matrix g from the three primitive reciprocal lattice vectors.

g
d̂ef
=






gx,1 gx,2 gx,3

gy,1 gy,2 gy,3

gz,1 gz,2 gz,3






The definition Eq. 4.13 of the reciprocal lattice vectors can be expressed in matrix form as

g⊤T
Eq. 4.13
= 2π111 (4.14)

Thus the matrix g is obtained as

g
Eq. 4.14
= 2π

(
T−1

)⊤
(4.15)
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The general reciprocal lattice vectors are

~Gi ,j,k = i~g1 + j~g2 + k~g3

The reciprocal lattice vectors play an important role in the Fourier transform of periodic functions.
All plane waves that are periodic with the lattice vectors ~Tn are characterized by a reciprocal lattice
vector.

ei
~G(~r+~Tn) = ei

~G~r

⇒ ~G(~r + ~Tn) = ~G~r + 2πmn

⇒ ~G~Tn = 2πmn

⇒ ~GT = 2π~m

⇒ ~G = 2π~mT−1 = 2π
(
T−1

)⊤
~m

where mn are integers. The allowed values for ~G are exactly those of the reciprocal lattice. This was
the motivation for the definition Eq. 4.14.
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C6C3

∆2

∆1

t3,−2,0

T2

T1

g1

g2

Fig. 4.6: Translational and rotational symmetry of a single graphite sheet and demonstration of
reciprocal lattice vectors. Graphite is a layered material, which consists of sheets as the one shown.
The yellow balls indicate the carbon atoms and the blue sticks represent the bonds. In graphite these
two-dimensional sheets are stacked on top of each other, where every second sheet is shifted such
that an atom falls vertically below the point indicated by C6. Here we only consider the symmetry
of a single sheet. The elementary unit cell is indicated by the red parallelogram, which is spanned by
the elementary lattice vectors ~T1 and ~T2. The third lattice vector points perpendicular to the sheet
towards you. An example for a general lattice vector is ~t3,−2,0 = 3~T1− 2~T2+0~T3. The lattice planes
indicated by the dashed lines. The lattice planes are perpendicular to the sheet. The distance of the
lattice planes are indicated by ∆1 and ∆2. The elementary reciprocal lattice vectors are ~g1 and ~g2.
The third reciprocal lattice vector points perpendicular out of the plane towards you. Note that the
reciprocal lattice vectors have the unit “inverse length”. Thus their length is considered irrelevant in
this real space figure. The axis through C3 standing perpendicular to the plane is a three-fold rotation
axis of the graphite crystal. The axis through C6 perpendicular to the plane is a 6-fold rotation axis of
the graphite sheet, but only a three-fold rotation axis of the graphite crystal. (Note that a rotation
axis for the graphite crystal must be one for both sheets of the crystal). In addition there is a mirror
plane lying in the plane. Furthermore there are several mirror planes perpendicular to the plane: One
passing through every atom with one of the three bonds lying in the plane and one perpendicular
each bond passing through the bond center.

4.4 Bloch Theorem

In order to make the description of an infinte crystal tractable, we exploit translational symmetry to
block-diagonalize the Hamiltonian. The theoretical basis is Bloch’s theorem.
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BLOCH’S THEOREM

The eigenstates of the Hamiltonian with crystal symmetry Ŝ(~t), i.e. [Ĥ, Ŝ(~t)]− = 0, can be written
as a product

ψ~k,n(~r) = ~u~k,n(~r)e
i~k~r (4.16)

of a periodic function u~k,n(~r ) with a plane wave ei~k~r . Ŝ(~t) is a translation operator for the real space
translation vector ~t.

...or...
The Hamiltonian of a crystal is block diagonal for Bloch states, that is

〈ψ~k |Ĥ|ψ~k ′〉 = 0 for ~k 6= ~k ′

when

ψk(~r ) = ~uk(~r )e
i~k~r where uk(~r + ~t) = uk(~r)

The underlying idea of Bloch’s theorem is to Block-diagonalize the Hamiltonian by finding the
eigenstates of the translation operators.

Let Ŝ(~t) be the translation operator for a given lattice translation ~t = ~T1i + ~T2j + ~T3k.

Ŝ(~t) =

∫

d3r |~r + ~t〉〈~r | (4.17)

Translation operator and canonical momentum

A general theorem is that any translation for an unbounded continuous variable can be expressed by
the canonical momentum.

Ŝ(~t) = e−
i
~
~̂p~t (4.18)

This relation will be used for the Proof of Bloch’s theorem. It is discussed to some extend in ΦSX:
Quantum Physics. Let us anyway go quickly over the proof.

Proof of Eq. 4.18:

1. First we define a basis of momentum eigenstates1

~̂p|~p〉 = |~p〉~p eigenvalue equation

〈~p|~p〉 = (2π~)3δ(~p − ~p′) orthonormality

1̂ =

∫
d3p

(2π~)3
|~p〉〈~p| completeness

The real space wave function of the momentum eigenstates are plane waves

〈~r |~p〉 = e i~ ~p~r real space representation

which provides a transformation between the momentum and position eigenstates.

2. Let us now work out a matrix element that we will need in the following:

〈~r |e− i
~
~̂p~t |~p〉 = 〈~r |~p〉

︸ ︷︷ ︸

e
i
~
~p~r

e−
i
~
~p~t = e

i
~
~p(~r−~t) = 〈~r − ~t|~p〉

1There are various definitions for momentum eigenstates in the literature, that differ by their normalization.
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3. Now we are ready to bring the operator defined by Eq. 4.18 into the form Eq. 4.17, which is
the definition of the translation operator.

e−
i
~
~̂p~t =

∫

d3r |~r 〉〈~r |
︸ ︷︷ ︸

1̂

e−
i
~
~̂p~t

∫
d3p

(2π~)3
|~p〉〈~p|

︸ ︷︷ ︸

1̂

=

∫

d3r |~r 〉
∫

d3p

(2π~)3

(

〈~r |e− i
~
~̂p~t |~p〉

)

︸ ︷︷ ︸

〈~r−~t|~p〉

〈~p|

=

∫

d3r |~r 〉〈~r − ~t|
∫

d3p

(2π~)3
|~p〉〈~p|

︸ ︷︷ ︸

1̂

=

∫

d3r |~r + ~t〉〈~r | Eq. 4.17
= Ŝ(t) q.e.d

Proof of Bloch’s theorem

Let us assume that |ψ〉 is an eigenstate of the lattice translation, i.e.

〈~r |Ŝ(~t)|ψ〉
︸ ︷︷ ︸

ψ(~r−~t)

Eq. 4.18
= 〈~r |ψ〉

︸ ︷︷ ︸

ψ(~r)

e−
i
~
~p~t

︸ ︷︷ ︸

e−i~k~t

Now we multiply this equation with e−i~k(~r−~t)

ψ(~r − ~t)e−i~k(~r−~t) = ψ(~r )e−i~k~r

which says that the function u defined as

u(~r) = ψ(~r)e−i
~k~r

is periodic. Thus the eigenstate of the lattice translation is a product of a periodic function u(~r) and
a plane wave.

We have shown before that the eigenstates of a Hamiltonian can be expressed a superposition
of eigenstates of its symmetry operator. Thus also the eigenstates of the Hamiltonian with lattice
symmetry can be written in the form of a Bloch wave, and the wave vector is a quantum number for
this system. This finishes the proof of Bloch’s theorem.

4.5 Reduced zone scheme

Because the function uk(~r) has only Fourier components at the reciprocal lattice vectors, it is periodic
with the real space lattice symmetry.

This is the reason why band structures are not represented in an extended zone scheme but in
a reduced zone scheme.

• in the extended zone scheme the band structure of free electrons would be a single parabola,
and would extend to infinity in reciprocal space.

• in the periodic zone scheme, the free electron would consists of many parabola centered at
the reciprocal lattice points. Thus, the reciprocal zone scheme is periodic with the periodicity
of the reciprocal lattice.
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Fig. 4.7: Schematic demonstration how a periodic potential results in a coupling between states with
the same wave vector in the reduced zone scheme
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Fig. 4.8: Extended, periodic and reduced zone scheme for a one-dimensional free particle.

• in the reduced zone scheme, only the irreducible part of the periodic zone scheme is shown,
that is one single repeat unit. The band structures shown in Fig. 4.1 are in a reduced zone
scheme. There are several choices for the repeat units of the reciprocal lattice. One choice is
simply the primitive unit cell of the reciprocal lattice. However, the shape of the unit cell does
not have the point-group symmetry of the reciprocal lattice. Therefore one instead chooses
the Wigner Seitz cell2 of the reciprocal lattice, which is called the Brillouin zone.

In the reduced zone scheme, all wave vectors connected by a reciprocal lattice vector, fall on top
of the same point in the Brillouin zone. Thus, a Hamiltonian that has lattice periodicity couples all
points that lie at the same point in the Brillouin zone. This is demonstrated in Fig. 4.7.

From perturbation theory we know that the splitting of two interacting states is large when the
two states are close or even degenerate. Thus the largest effect in the band structure occurs right
at the boundary of the irreducible zone, where the degeneracy of the free electron gas is lifted by the
periodic potential. Thus, local band gaps appear at the surface of the Brillouin zone. This band gap,
however, is usually warped, so that there is no energy window, that completely lies in all local band
gaps. In that case the material remains a metal.

2The Wigner Seitz cell of a lattice consists of all points that are closer to the origin than to any other lattice point.
Thus, it is enclosed by planes perpendicular to the lattice vectors cutting the lattice vector in half.
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4.6 Bands and orbitals

So far we have discussed the band structures as a variation of the dispersion relation of the free
electron bands. However this point of view obscures the relation to chemical binding and the local
picture of the wave functions.

The band structure can also be constructed starting from local orbitals. This is demonstrated
here for the two-dimensional square lattice with atoms having s- and p-orbitals in the plane.

In order to simplify the work, we restrict ourselves to the high symmetry points Γ, X and M of
the two-dimensional reciprocal unit cell.

The real space lattice vectors are

~T1 =

(

1

0

)

a and ~T2 =

(

0

1

)

a

The corresponding reciprocal space lattice vectors are

~g1 =

(

1

0

)

2π

a
and ~g2 =

(

0

1

)

2π

a

The high-symmetry points are

kΓ = 0 =

(

0

0

)

2π

a
; kX =

1

2
~g1 =

(

1

0

)

π

a
and kM =

1

2
(~g1 + ~g2) =

(

1

1

)

π

a

The first step is to construct Bloch waves out of the atomic orbitals, by multiplying them with
ei
~k~t , where ~t is the lattice translation of the atom relative to the original unit cell. This is illustrated

in Fig. 4.9 on page 71.

• At the Γ, the phase factor for a lattice translation of the orbital is one. Thus we repeat the
orbital from the central unit cell in all other unit cells.

• At the X point, the phase factor for a lattice translation along the first lattice vector is ei~kX ~T1 =
eiπ = −1 and the phase factor for the lattice translation along the second lattice vector ~T2 is
ei
~kX ~T2 = +1. Thus if we go to the right the sign of the orbital alternates, while in the vertical

direction the orbital remains the same.

• At the M point, the phase factor alternates in each lattice direction, resulting in a checkerboard
pattern.

Next we need to set up the Hamilton matrix elements for each k-point, using the Slater-Koster
parameters. For a back-on-the envelope estimate the nearest neighbor matrix elements will be suffi-
cient. The matrix elements are firstly ǫs and ǫp, the energies of the orbitals without any hybridization.
Secondly we need the hopping matrix elements tssσ, tppσ, tppπ. In principle we would also need tspσ,
but that matrix element will not be needed in our example.

In our simple example, the Bloch states are already eigenstates of the Hamiltonian so that we
only need to calculate their energy. We obtain

Γ X M

ǫp + tppσ − tppπ ǫp + tppσ + tppπ ǫp − tppσ + tppπ
ǫp + tppσ − tppπ ǫp − tppσ − tppπ ǫp − tppσ + tppπ
ǫs + 2tssσ ǫs ǫs + 2tssσ

If there is a band structure available, we can estimate the Hamilton matrix elements from that.
Otherwise we just make an educated guess.
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Fig. 4.9: Illustration of a band structure in real and reciprocal space for a planar square lattice.
Bottom left: The reciprocal lattice is spanned by the reciprocal lattice vectors ~g1 and ~g2.The yellow
square is the corresponding Brillouin zone. The green inset is the Brillouin zone, whose corners are
the high symmetry points Γ, X and M. On the top left the corresponding basis functions made from
one s-orbital and two p-orbitals in a Bloch-basis are shown. These states are also eigenstates of
the Hamiltonian, because the coupling vanishes due to point group symmetry at the high-symmetry
points. On the top left a schematic band structure is shown and compared to a free-electron band
(red).

4.7 Calculating band structures in the tight-binding model

Now we wish to calculate the band structure. Let us begin with a tight-binding basisset with the
usual assumption that the tight-binding orbitals shall be orthogonal. The tight-binding orbitals shall
be represented by kets |~t, α〉, where ~t denotes a discrete lattice-translation vector and α denotes the
type of the orbital such as an s, px , py , pz , . . . orbital on a specific site in the unit cell.
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A Bloch wave can be represented as

|Ψ~k,n〉 =
∑

~t,α

|~t, α〉〈~t, α|Ψ~k,n〉

Eq. 4.16
=

∑

~t,α

|~t, α〉〈~t, α|
∫

d3r |~r〉ei~k~r 〈~r |u~k,n〉

=
∑

~t,α

|~t, α〉ei~k~t〈~t, α|
∫

d3r |~r 〉ei~k(~r−~t)〈~r |u~k,n〉

u(~r)=u(~r−~t)
=

∑

~t,α

|~t, α〉ei~k~t〈~t, α|
∫

d3r |~r 〉ei~k(~r−~t)〈~r − ~t|u~k,n〉

~r→~r+~t
=

∑

~t,α

|~t, α〉ei~k~t
∫

d3r 〈~t, α|~r + ~t〉
︸ ︷︷ ︸

〈~0,α|~r〉

ei
~k~r 〈~r |u~k,n〉
︸ ︷︷ ︸

〈~r |Ψ~k,n〉

=
∑

~t,α

|~t, α〉ei~k~t〈~0, α|ψ~k,n〉 (4.19)

This shows us how we can represent the entire wave function with a vector cα = 〈~0, α|Ψk,n〉, which
has the dimension of the number of orbitals in the elementary unit cell.

Our next goal is to find an equation for this vector. We will use the matrix elements of the
Hamilton operator in the basis of tight-binding orbitals

The Hamilton operator in the basis of tight=binding orbitals is

〈~t, α|Ĥ|~t ′, β〉 = h~t,α,~t ′,β

Now let us work use the Schrödinger equation

Ĥ|Ψk,n〉 = |Ψk,n〉ǫk,n
Eq. 4.19⇒

∑

~t,α

Ĥ|~t, α〉ei~k~t〈~0, α|Ψk,n〉 =
∑

~t,α

|~t, α〉ei~k~t〈~0, α|Ψk,n〉ǫk,n

〈~0,β|⇒
∑

~t,α

〈~0, β|Ĥ|~t, α〉
︸ ︷︷ ︸

h~0,β,~t,α

ei
~k~t〈~0, α|Ψk,n〉 =

∑

~t,α

〈~0, β|~t, α〉
︸ ︷︷ ︸

δ~0,~tδα,β

ei
~k~t〈~0, α|Ψk,n〉ǫk,n

⇒




∑

~t,α

h~0,β,~t,αe
i~k~t





︸ ︷︷ ︸

hα,β(~k)

〈~0, α|Ψk,n〉 = 〈~0, β|Ψk,n〉ǫk,n

Thus we obtained a k-dependent eigenvalue equation in matrix form with a finite and usually
small dimension. This problem can be broken down into smaller subproblems, if we exploit the
symmetry arguments that we used earlier for the molecules. Symmetry can be used especially at the
high-symmetry points and lines in reciprocal space, where the band structure is usually represented.

Worked example

Let us consider the example of a linear chain fo s-orbitals. The infinite Hamiltonian has the form

h =











ǫs hssσ 0 . . .

hssσ ǫs hssσ 0 . . .

0 hssσ ǫs hssσ 0 . . .

. . . 0 hssσ ǫs hssσ 0 . . .
... 0 hssσ ǫs hssσ 0










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The Hamilton matrix elements can also be written as

hi ,1,j,1 =
∑

i

ǫsδi ,j + hssσ (δi ,j+1 + δi ,j−1)

Thus the k-dependent Hamiltonian yields

ǫ(k) = ǫs + 2hssσ cos(k)

Note that hssσ is negative, because it is approximately equal to the overlap matrix element multiplied
with the potential in the bond-center. The potential is negative.
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Chapter 5

From atoms to solids

In this chapter I want to describe how one can construct an approximate density of states for materials.
The density of states in turn already provides insight into many of the electronic properties of a
material. A rough density of states can already be constructed without the knowledge of the atomic
structure of a material. Much of it depends only on the composition.

5.1 The Atom

5.1.1 The generalized hydrogen atom

When we think of an atom the first thought is the generalized hydrogen atom. A generalized
hydrogen atom is an atom with non-interacting electrons, which may have any atomic number Z.
The Schrödinger equation of the generalized hydrogen atom can be solved analytically.

The energy levels of a generalized hydrogen atom are

ǫn,ℓ,m,s = −
mee

4

(4πǫ0~)2
Z2

2n2

The states are characterized by the quantum numbers

• the principal quantum number n

• the angular momentum quantum number ℓ ∈ {0, . . . , n − 1}. The main angular momenta are
als indicated by the letters s, p, d, f for ℓ = 0, 1, 2, 3.

• the magnetic quantum number m ∈ {−ℓ, . . . , ℓ}

• the spin quantum number s ∈ {↑, ↓}.

Many of these quantum numbers are degenerate.

• The degeneracy of different angular momentum quantum numbers ℓ is a consequence of the
Z/r potential, which has a dynamical symmetry that conserves the so-called Laplace-Runge-
Lenz vector1. This degeneracy is lifted as soon as the potential obtains a shape different from
the 1/r shape.

• The degeneracy of the magnetic quantum number is a consequence of the spherical symmetry
of the atom.

1See ΦSX: Quantum mechanics, Appendix “ℓ degeneracy of the hydrogen atom”.
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• The degeneracy of the spin eigenvalues is there simply because it does not enter the Hamilto-
nian.

The generalized hyrdogen atom has the following multiplets

n degeneracy valence configuration

1 2 2s
2 8 2s+6p
3 18 2s+6p+10d
4 32 2s+6p+10d+14f
5 50 2s+6p+10d+14f+18g
6 72 2s+6p+10d+14f+18g+22h
7 88 2s+6p+10d+14f+18g+22h+16i

5.1.2 Lifting the ℓ-degeneracy: Aufbau principle

The generalized hydrogen atom assumes that the electrons do not interact with each other. If we
consider the Coulomb repulsion between the electrons, each electron effectively sees not only the
nucleus, but the entire core including the inner electrons.

As a result, the outer electrons experience a potential of the form

vef f (r ) =
−Zef f e2
4πǫ0r

where the effective atomic number Zef f = Z−Ncore is given by the charge of the nucleus and those
of the inner electrons, the core electrons.

Quite a few observations can be rationalized by the simple model, that the Coulomb potential of
the nucleus is screened by the inner electrons.

• Screening of the nuclear Coulomb attraction: The bare Coulomb potential is too attractive
and would place the valence electrons at much to low energy. If the atomic number is reduced
to the effective atomic number, the valence electrons of all atoms are placed in a similar energy
region. This explains why atoms in the same group behave similar, and why the period they
belong to is secondary.

• Lifting the ℓ degeneracy: The observation is that

– for a given atom, the s-electrons always lie below the p-electrons with the same principal
quantum number and that

– the 3d-electrons become occupied only in the 4-th period instead of the 3rd period and

– that the 4d-electrons become occupied only in the 6-th period instead of the 4th period

This effect can be traced to the contraction of the core orbitals.

The “accidental” ℓ degeneracy of the generalized hydrogen atom can be described as a bal-
ance between zentrifugal force and core repulsion, that both act against the nuclear Coulomb
attraction.

– The zentrifugal force puts a penalty onto states with larger angular momentum. A higher
angular momentum implies a stronger centrifugal force, that pushes electrons away from
then nucleus. 2

2The concept of centrifugal force can be seen in the radial Schrödinger equation for the radial R(r) part of the
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– Core repulsion, on the other hand, puts a penalty to states with lower angular momentum.
Core repulsion only acts between electrons with the same angular momentum3. Because
there are more core shells with lower angular momentum, the core repulsion acts stronger
on the low-angular momentum states.

In the real atom the subtle balance between zentrifugal force and core repulsion is broken,
because the inner electrons are more contracted so that the core repulsion is weakened. The
reduced core repulsion stabilizes4 the states with lower angular momentum.

The core electrons are contracted because there are less inner electron-shells screening the
nuclear attraction of the core shells than of the valence electrons.

n=1 1s  

3s

3p

3d

n=3

n=5 5s

5p

5d

5f6d

6p

6sn=6

n=7 7s

2p

2s

4f

n=4 4s

4p

4d

n=2

Fig. 5.1: Aufbau principle. Shown is a hypothetical energy diagram constructed such that the
occupation from bottom up directly leads to the periodic table. (I have drawn the figure such that
it suggests an upward shift of shells with higher angular momentum. This may be misleading as we
trace the origin to a stabilization of shells with lower angular momentum.)

wave function Ψ(~r) = R(|~r |)Yℓ,m(~r)
(

− ~
2

2m
∂2r +

~2

2m

ℓ(ℓ+ 1)

r2
︸ ︷︷ ︸

vzf (r)

− Ze2

2m0r
− ǫn

)

rR(~r) = 0

The radial part experiences an additional ℓ-dependent potential that pushes the electrons away from the nucleus.
3Core repulsion is due to the condition that wave functions are orthogonal. This condition in turn is a consequence

of the Pauli principle. Because states with different angular momentum are orthogonal by their angular motion, there
is no additional effect from core orthogonalization. Core repulsion is a variant of Pauli repulsion.

4shifts the energy levels down in energy
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Radial extent is determined by principal qantum number

The radial extent of the orbitals is, surprisingly, rather similar for orbitals with the same principal
quantum number n. A consequence is that the 4s and 4p orbitals in a transition metal behave almost
like free electrons, while the 3d-orbitals are core-like and interact only weakly with neighboring atoms.

This explains that the d-electrons of transition metal elements form weak bonds that can be
broken easily. This makes them ideal for catalytic behavior. A catalyst must form a bond with the
transition state of a reaction, thus lowering the reaction barrier, but this bond must also be able to
break again, so that the catalyst can return into its original form. The f-electrons behave like true
core electrons, with the exception that the f-shell is only partially filled.

The crossing of 3d and 4s orbitals for increasing atomic number is evident from the periodic
table. However, in compounds it is much less evident. In a compound, transition metals normally
loose their s-electrons. Because the s-electrons are located far from the nucleus, they experience
the Pauli repulsion from the electrons of any neighboring atoms. This shifts their electron levels up,
so that the s-electrons are transferred into the d-shell. We could say that the Pauli repulsion by the
core electrons is compensated by that of the neighboring atoms.

Even when the metals are in their elemental form, these metals can be considered cations immersed
into a free electron gas formed by the s-electrons.

5.2 From atoms to ions

5.2.1 Ionization potential and electron affinity

Even before atoms are brought together, they may already exchange electrons. This is the onset
for the formation of an ionic bond. My experience is that this should be the first step to rationalize
chemical bonding in compounds made from different atoms.

0Na +Na Cl −Cl 0
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The energy to move an electron to the vacuum level is the ionization potential. The energy to
move an electron from the vacuum level to an atom is called the electron affinity.

Thus the energy gained by transferring electrons is the difference between the ionization potential
and the electron affinity.

∆E1 = A− I
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Once the ions are formed, they attract each other electrically, and additional energy

∆E2 =
Q1Q2

4πǫ0|~R1 − ~R2|

is gained by bringing them closer together.
The third effect playing a role is the onsite Coulomb repulsion of the electrons. Adding a second

electron to an atom is more difficult than adding the first, because the two additional electrons repell
each other. Therefore, the electron gain for transferring electrons becomes weaker with each electron
already transferred.

The direction of the charge transfer can be read from the electronegativities. Mulliken’s
electronegativity[11] is proporational to the mean value of electron affinity and ionization poten-
tial. Electrons are transferred from the electropositive (less electronegative) atoms to the more
electronegative atoms. Therefore the first step that we consider when bringing atoms into a ma-
terial, is to transfer electrons, so that the electropositive atoms give electrons to electronegative
atoms. Electropositive atoms are predominantly to the left of the periodic table and electronegative
atoms are on the right.

The limit for the electron transfer is reached when an electron shell is completely full or empty.

5.2.2 Oxidation states and electron count

In my experience, the best way to rationalize the electronic structure of a solid material is to use the
fully ionic model as starting point.

This electron transfer is not always unique. If it is not obvious how the electrons are transferred,
one can consider both choices or select one of them. If it is not obvious how to choose, it is also not
important.

Let us do some examples. Use the periodic table to identify the number and type of available
valence electrons.

• NaCl→ Na+Cl−

• MgO→ Mg2+O2−

• SiO2 → Si4+O2−2

• SrTiO3→ Sr2+Ti4+O2−3

• LaAlO3→ La3+Al3+O2−3

• CaMnO3→ Ca2+Mn4+O2−3 . The Mn atom keeps three some of its seven d-electrons. The
number of d-electrons left on Mn is determined by the number of electrons that can be passed
to the oxygen atoms

• CO2 → C4+O2−2

• GaAs → Ga3+As3−. GaAs is a III − V compound. It belongs to the same structural class
as silicon, but instead of four-valent electrons its consists of atoms with three and with five
valence electrons.

Interesting is the case at surfaces or interfaces. Take as an example the interface between SrTiO3
and LaAlO3. SrTiO3 is a perovskite which consists of alternating planes of TiO2 and SrO. LaAlO3
has the same structure wit planes of AlO2 and LaO. A the interface a 2-dimensional electron gas is
formed because the charges at the interface cannot becompensated.

Another case is the polar (111) surface of an oxide such as Al2O3. The oxide has alternating
layers of Al and O. At the oxygen terminated surface there is a net charge. This charge has to enter
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the Al-states, which is unfavorable. In humid air, it can also react with water so that the oxygen
atoms are converted into hydroxyl groups having less net charge.

A common misconception is that the ionic construction reflects the real charge distribution. There
are various definitions of the charge of an atom. Here we use the concept of an oxidation stateWhat
we use here are the oxidation states. The oxidation state an extremely valuable tool to predict the
position of band gaps and of the stability of a material.

The oxidation state is a hypothetical charge that an atom would have if all bonds would be fully
ionic. (See IUPAC definition on p. 80)

The oxidation state is based on the convention that an electron is fully attributed to the more
electron acceptor. In reality, however, this orbital is a superposition of orbitals of electron donor and
electron acceptor. Therefore some of the charge distribution remains at the electron donor. This
explains the seeming contradiction between charge distribution and formal charges.

Even for an ionic compound, the charge density does not deviate much from that of overlapping
atomic charge densities. The formation of an ionic bond does not lead to a large rearrangement
of the charge distribution because of the following: The electrons of an electropositive atom are
loosely bound and therefore located at large distance from the nucleus. In a compound, the nearest
neighbors are located at the same distance, so that little charge rearrangement is required to transfer
an electron.

OXIDATION STATE

“A measure of the degree of oxidation of an atom in a substance. It is defined as the charge an atom
might be imagined to have when electrons are counted according to an agreed-upon set of rules:

1. the oxidation state of a free element (uncombined element) is zero;

2. for a simple (monatomic) ion, the oxidation state is equal to the net charge on the ion;

3. hydrogen has an oxidation state of 1 and oxygen has an oxidation state of -2 when they are
present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of
-1 in hydrides of active metals, e.g. LiH, and oxygen has an oxidation state of -1 in peroxides,
e.g. H2O2;

4. the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in
ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the
charge on the ion. For example, the oxidation states of sulfur in H2S, S8 (elementary sulfur),
SO2, SO3, and H2SO4 are, respectively: -2, 0, +4, +6 and +6. The higher the oxidation state
of a given atom, the greater is its degree of oxidation; the lower the oxidation state, the greater
is its degree of reduction.”

Source IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by
A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line
corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates
compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook.

5.2.3 Transition metals

Transition metals are again special. They contain two different types of electrons: weakly bound
s electrons and core-like d-electrons. When a compound is formed, one should first transfer the
s-electrons to the d-electron shell. While s- and d-electrons in an atom are nearly degenerate, the
Pauli Repulsion by a neighboring atom shifts the weakly bound s-electrons up in energy, while leaving
the d-electrons untouched. Thus in a compound the near degeneracy is lifted and of little relevance
any more.

One can also view the s-electrons as extremely electropositive and the d-electrons as much less
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electropositive.

• electron transfer

• electron count

• upshift of s-versus-d electrons (s-electrons are electropositive) Model of transition metal as
positive ion cores in a see of electrons

• tiefe Baender sind schmaeler (lokalisierte zustaende); 3d-bander sind so lokalisiert wie 3sp
baender etc.

• crystal field splitting (octahedral, tetrahedral)

5.3 Prototypical density of states

• simple metals (Na, Al)

• transition metals

• covalent compounds (Si)

• simple oxides or ionic compounds

• transition metal oxides
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5.4 Canonical band structures

Andersen recognized that also in band structures one can recognize characteristic patterns. This lead
to the Canonical Band theory[12, 13, 14]

The canonical band theory allows one to construct approximate band structures from basic pat-
terns, namely the bands of individual orbitals. First one investigates a band of orbitals with a pure
angular momentum character in a given structure. Only then one investigates the interaction of the
bands among each other.

The canonical bands for s, p and d-orbitals are shown in Fig. ??. These canonical bands need to
be scaled with the band width, and shifted in energy so that their center agrees with the true energy
level.

In the second step one considers the hybridization between the bands. The main effect is that
bands usually avoid crossing each other. That is, each crossing, except for those dictated by sym-
metry, are converted into avoided crossings.

CB-Figs/Varenna/screenedcanonicalfcc.eps
CB-Figs/Varenna/screenedcanonicalbcc.eps

Fig. 5.2: Canonical bands for the fcc (left) and the bcc (right)structures. the canonical bands for s-,
p-, and d orbitals are shown from bottom to top.(From O.K. Andersen et al. Varenna notes)
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CB-Figs/Varenna/dosbccfcchcp.eps

CB-Figs/Varenna/deltaebccfcchcp.eps

Fertig: 14. Jun., 07 14. Doppelstunde

Fig. 5.3: Band structure of alumina (Al2O3), lower right, from R.H. French[?].
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5.5 Van Hove Singularities

This section is not done

Van Hove singularities[15] are the non-analytical points of the density of states function. Because
their shape is rather characteristic, we may use it to extract physical information.

5.5.1 Dimensionality

At first we look for rather global features, that allow to extract information of the intrinsic dimen-
sionality of the problem. Questions may be of a material contains structures, where the electrons are
confined in effectively one-dimensional structures.

• zero d. delta functions

• band edge, linear dispersion, 1d,2d,3d. (compare graphitehttp://arxiv.org/pdf/cond-mat/
0408326v1.pdf http://prola.aps.org/pdf/PR/v71/i9/p622_1, graphene DOS, phonon
dos)

• band edge, parabolic dispersion, 1d,2d,3d

• saddle point 2d and relation to 1d- band edges

• saddle points 3d, relation to (1d?) and 2d band edges

• refer to DOS when discussing Peierls distortion.

• relate to Landau Levels (effective reduction of dimensionality??)



Chapter 6

The Standard model of solid-state
physics

from P.E. Blöchl, ΦSX: The electronic structure
of matter Solid state physics has, in contrast to elementary particle physics, the big advantage that
the fundamental particles and their interactions are completely known. The particles are electrons
and nuclei1 and their interaction is described by electromagnetism. Gravitation is such a weak force
at small distances that it is completely dominated by the electromagnetic interaction. The strong
force, which is active inside the nucleus, has such a short range that it does not affect the relative
motion of electrons and nuclei.

Some argue that solid-state physics is not at the very frontier of research, because its particles
and interactions are fully known. However, a second look shows the contrary: While the constituents
are simple, the complexity develops via the interaction of many of these simple particles. The simple
constituents act together to form an entire zoo of phenomena of fascinating complexity.

The dynamics is described by the Schrödinger equation:

i~∂t |Φ〉 = Ĥ|Φ〉 (6.1)

where the wave function depends on the coordinates of all electrons and nuclei in the system. In
addition it depends on the spin degrees of freedom of the electrons. Thus a wave function for N
electrons and M nuclei has the form

Φσ1,...,σN (~r1, . . . ,~rN , ~R1, . . . , ~RM)

where we denote the electronic coordinates by a lower-case~r and the nuclear positions by an uppercase
~R. The symbols σj are the spin indices, which may assume values σj ∈ {− 12 ,+ 12}. We will often use
the notation σj ∈ {↓, ↑}. The spin quantum number in z-direction is sz = ~σ.

Often we will also combine position and spin index of the electrons in the form ~x = (σ,~r ), so that

Φ(~x1, . . . , ~xN , ~R1, . . . , ~RM)
def
=Φσ1,...,σN (~r1, . . . ,~rN , ~R1, . . . , ~RM)

For the integrations and summations we use the short-hand notation
∫

d4x
def
=
∑

σ∈↑,↓

∫

d3r (6.2)

1The cautious reader may object that the nuclei are objects that are far from being fully understood. However, the
only properties that are relevant for us are their charge, their mass, and their size.
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Most important is the antisymmetry of the wave function with respect to interchange of two
electrons, which is the cause for the Pauli principle

PAULI-PRINCIPLE

Φ(. . . , ~xi , . . . , ~xj , . . . , ~R1, . . . , ~RM) = −Φ(. . . , ~xj , . . . , ~xi , . . . , ~R1, . . . , ~RM) (6.3)

An electronic many-particle wave function for Fermions is antisymmetric under particle exchange. As
a consequence, no two electrons with the same spin can occupy same point in space or the same
one-particle orbital.

The Standard Model

Now we arrive at the most important equation, which will be the basis of all that will be said in this
book. This equation specifies the many-particle Hamiltonian of our standard model of solid-state
physics.

HAMILTONIAN OF THE STANDARD MODEL

The Hamiltonian for a many particle system, such as a molecule or a solid, is

Ĥ =

M∑

j=1

−~2
2Mj

~∇2~Rj
︸ ︷︷ ︸

Ekin,nuc

+

N∑

i=1

−~2
2me

~∇2~ri
︸ ︷︷ ︸

Ekin,e

+
1

2

M∑

i 6=j

e2ZiZj

4πǫ0|~Ri − ~Rj |
︸ ︷︷ ︸

EC,nuc−nuc

−
N∑

i=1

M∑

j=1

e2Zj

4πǫ0|~ri − ~Rj |
︸ ︷︷ ︸

EC ,e−nuc

+
1

2

N∑

i 6=j

e2

4πǫ0|~ri − ~rj |
︸ ︷︷ ︸

EC ,e−e

(6.4)

The electrons are characterized by their charge q = −e, their mass me and their position ~rj . The
nuclei are characterized by their masses Mj , their atomic numbers Zj and their positions ~Rj . The first
term, denoted by Ekin,nuc , describes the kinetic energy of the nuclei. The second term, denoted by
Ekin,e , describes the kinetic energy of the electrons. The third term, denoted by EC,nuc−nuc , describes
the electrostatic repulsion between the nuclei. The fourth term, denoted by EC,e−nuc , describes the
electrostatic attraction between electrons and nuclei. The last term, denoted by EC,e−e , describes
the electrostatic repulsion between the electrons.

Deficiencies of the standard model

No model is perfect. Therefore let me discuss here, what I consider its main deficiencies. The
following effects are missing:

• Relativistic effects are important for the heavier elements, because the deep Coulomb potential
of the nuclei results in relativistic velocities for the electrons near the nucleus. Relativistic effects
are important for magnetic effects such as the magnetic anisotropy.

• Magnetic fields have only a small effect on solids. The dominant magnetic properties of
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materials do not originate from magnetic interactions, but result from exchange effects of the
spin-distribution. Important are, however, stray fields, which tend to force the magnetization
at a surface to be in-plane. Magnetic effects are also important to simulate the results of
NMR or Mössbauer experiments, which are sensitive to the magnetic interaction of nuclei and
electrons.

• Size, shape and spin of the nuclei play a role in certain nuclear experiments which measure
isomer shifts, electric-field gradients and magnetic hyperfine parameters.

• Photons. The use of electrostatics is justified, because the electrons and nuclei are moving
sufficiently slow that the electrostatic field responds instantaneously. Excitations by photons
can be treated explicitly.

These effects are not necessarily ignored, but can be incorporated into the standard model, when
required.

Dimensional Bottleneck

It is immediately clear that the standard model, as simple as it can be stated, is impossible to solve
as such. To make this argument clear let us estimate the amount of storage needed to store the
wave function of a simple molecule such as N2. Each coordinate may be discretized into 100 grid
points. For 2 nuclei and 14 electrons we need 100(3∗16) grid points. In addition, we need to consider
the 214 sets of spin indices. Thus we need to store about 214 ·1003∗16 ≈ 10100 numbers. One typical
hard disk can hold about 100 GByte=1014 Byte, which corresponds to 1013 complex numbers. A
complex number occupies 16 byte. This implies that we would need 1087 hard discs to store a single
wave function. A hard-disc occupies a volume of 5 cm×5cm×0.5 cm=1.25 ×10−5 m3. The volume
occupied by the hard discs with our wave function would be 1082 m3 corresponding to a sphere with
a radius of 1027 m or 1011 light years! I hope that this convinced you that there is a problem...

The problem described here is called the dimensional bottle-neck.
In order to make progress we need to simplify the problem. Thus we have to make approximations

and we will develop simpler models that can be understood in detail. This is what solid state physics
is about.

In the following we will perform a set of common approximations, and will describe their limitations.
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Chapter 7

Spin orbitals

Before we continue, let me point out a special property of our one-particle wave functions.
When I first learned about spins and magnetic moments I was puzzled by the special role, which

was attributes to the z-coordinate. I learned that an electron can have a spin pointing parallel or
antiparallel to the z-axis. The direction of the z-axis however is arbitrary. It seemed as if the physics
changed, when I my turned my head.

Indeed there is nothing special about the z-coordinate. Here, we show that the more general
formulation describes electrons by two-component spinors. With this formulation we can form wave
functions that have a spin in an arbitrary direction. This restores the rotational symmetry that
appears to be broken in a simple-minded formulation.

We use here two-component spinor wave functions, which are also called spin-orbitals

φ(~x) = φ(~r , σ) = 〈~r , σ|φ〉

Spin-orbitals actually consists of two complex wave functions, one for the spin-down φ(~r , ↓) and one
for the spin up contribution φ(~r , ↑). One can write the spin orbitals also as two-component spinor

(

φ(~r , ↑)
φ(~r , ↓)

)

def
=

(

〈~r , ↑ |φ〉
〈~r , ↓ |φ〉

)

PHYSICAL MEANING OF A SPIN-WAVE FUNCTION

The square of a component of a spin wavefunction is the probability density Pσ(~r) for finding a
particle with the specified spin orientation at a specific position ~r .

This rule is completely analogous to the rule that the absolute square of a scalar wave function
is the probability density P (~r) = ψ∗~r)ψ(~r ) of finding a particle a a given position ~r .

Note, however, that the wave function contains much more information than that just mentioned.
Just as a regular wave function also contains the information about the momentum distribution or
the probability distribution of any other observable, the spin- wave function contains in addition also
the full information on the spin orientation.1

1This does not imply that it contains the information on all three vector components. Because the spin-components
do not commutate, the value of two spin component cannot be precise simultaneously. However we obtain the
probability for the orientation of the spin along any axis.
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Relation to spin eigenstates

This notation is a little puzzling at first, because one usually works with spin-eigenfunctions, for which
one of the components vanishes. The spin is defined as

~̂S =
~

2
~̂σ (7.1)

where the three components of the vector ~̂σ are

σ̂i =

∫

d3r

2∑

σ,σ′=1

|~r , σ〉σi ,σ,σ′〈~r , σ|

Somewhat confusing are the different indices for the different vector spaces: The index i can have
the values x, y , z and refers to the components of the vector ~σ. Each component of the vector ~σ is
a scalar operator. The indices σ, σ′ are indices in the two-dimensional spinor space. That is, σi is a
(2× 2) matrix for each value of i . These (2× 2) matrices are the Pauli matrices2

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

(7.2)

As a worked example let us determine the expectation value of the operator Ŝx for a one-particle
state |φ〉

〈φ|Ŝx |φ〉 = 〈φ|
[

~

2

∫

d3r

2∑

σ,σ′=1

|~r , σ〉σx,σ,σ′〈~r , σ|
]

|φ〉

=
~

2

∫

d3r

[
2∑

σ,σ′=1

〈φ|~r , σ〉σx,σ,σ′〈~r , σ|φ〉
]

=
~

2

∫

d3r

[(

〈φ|~r , ↑〉
〈φ|~r , ↓〉

)(

0 1

1 0

)(

〈~r , ↑ |φ〉
〈~r , ↓ |φ〉

)]

=
~

2

∫

d3r [〈φ|~r , ↑〉〈~r , ↓ |φ〉+ 〈φ|~r , ↓〉〈~r , ↑ |φ〉]

=
~

2

∫

d3r [φ∗(~r , ↑)φ(~r, ↓) + φ∗(~r , ↓)φ(~r, ↑)]

We obtain the spin density, that is the probability that we find a particle at position ~r multiplied with
the average spin expectation value in x-direction of that particle.

For a spin orbital that is an eigenstate of Sz , one of the spinor components vanishes.

Ŝz |φ↑〉 = |φ↑〉
(

+
~

2

)

⇒
(

〈~r , ↑ |φ↑〉
〈~r , ↓ |φ↑〉

)

=

(

φ↑(~r , ↑)
0

)

Ŝz |φ↓〉 = |φ↓〉
(

−~
2

)

⇒
(

〈~r , ↑ |φ↓〉
〈~r , ↓ |φ↓〉

)

=

(

0

φ↓(~r , ↓)

)

Note that the indices ↑, ↓ indicate the quantum number, while the pointers to the spinor components
are treated as argument, so that they can be distinguished from the quantum numbers. The quantum
number indicates that the orbital is an eigenstate to some symmetry operator.

2The matrices are made of the matrix elements 〈σ|~̂σ|σ′〉 of the operator ~̂σ. σ and σ′ are can assume the two values
↑, ↓.
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The spin-orbitals have the advantage that they allow to describe orbitals, for which the spin does
not point along the z-axis, but it can also point, for example, to the right or in any other direction.
For a spin orbital the spin direction can actually vary in space. Such an orbital is called non-collinear,
because the spins are not aligned.

Problem with conventional notation

In the literature, one usually uses another notation, namely

φσ(~r )
def
=φ(~r , σ)

Here, it is difficult to distinguish the role of σ as a coordinate and as quantum number. One usually
uses one-particle orbitals with only one spin component, for which σ is a quantum number. In our
notation this would be, – for a spin-up particle –,

φ↑(~r , σ) = 〈~r , σ|φ↑〉=̂
(

〈~r , ↑ |φ↑〉
0

)

The orbital still has two components, but one of them, namely φ↑(~r , ↓) vanishes. With the common
notation, it is difficult to write down expressions that do not break the rotational symmetry for the
spin direction.

Magnetization

So-far we used the spin operator to determine the expectation value of the spin. Now we would like
to obtain the spin density or the magnetization respectively. In order to describe the principles, let
us work out the charge density as a trivial example:

We know the projector P̂ (~r) onto a certain point in space ~r , which is

P̂ (~r)
def
=
∑

σ

|~r , σ〉〈~r , σ| = |~r , ↓〉〈~r , ↓ |+ |~r , ↑〉〈~r , ↑ |

We obtain the charge density as expectation value of P̂ (~r), multiplied with the electron charge
qe = −e.

ρ(~r) = 〈φ|
[
qP̂ (~r)

]
|φ〉 = q〈φ|

[
∑

σ

|~r , σ〉〈~r , σ|
]

|φ〉

= q
∑

σ

〈φ|~r , σ〉〈~r , σ|φ〉

= q
(

〈φ|~r , ↓〉〈~r , ↓ |φ〉+ 〈φ|~r , ↑〉〈~r , ↑ |φ〉
)

Hence, the charge density is, up to the factor q, the sum of the spin-up and spin-down densities.
After this introduction, we can analogously determine the magnetization.

The magnetization operator is obtained as product of the factor3 q
m , the spin operator and the

3The classical ratio of magnetic moment and angular momentum is q
2m

, which however assumes a constant ratio
the mass- and charge distribution in space. While the “distribution” of electrons leads to such a constant ratio, the
properties of a single electron may differ in a classical picture. In a quantum mechanical description the electron is
point-like with a certain gyromagnetic ratio, that follows directly from the relativistic Dirac equation.
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projection operator onto a point in space.

m̂i(~r )
def
=
q

m
P̂ (~r)Ŝi =

q~

2m
P̂ (~r)σ̂i

=
q~

2m

[
∑

σ

|~r , σ〉〈~r , σ|
]

︸ ︷︷ ︸

P̂ (~r )

[
∫

d3r ′
∑

σ′,σ′′

|~r ′, σ′〉σi ,σ′,σ′′〈~r ′, σ′′|
]

︸ ︷︷ ︸

σ̂i

=
q~

2m

∑

σ

∫

d3r ′
∑

σ′,σ′′

|~r , σ〉 〈~r , σ|~r ′, σ′〉
︸ ︷︷ ︸

δ(~r−~r ′)δσ,σ′

σi ,σ′,σ′′〈~r ′, σ′′|

=
q~

2m

∑

σ,σ′′

|~r , σ〉σi ,σ,σ′′〈~r , σ′′|

The factor µB
def
= e~
2me

is the Bohr magneton, which is approximately equal to the magnetic moment
of an electron. Spin and magnetic moment of the electron point in opposite directions due to the
negative charge of the electron.

MAGNETIZATION OPERATOR

~̂m(~r) =
q~

2m

∑

σ,σ′

|~r , σ〉~σσ,σ′〈~r , σ′| (7.3)

with the Pauli matrices ~σ defined in Eq. 7.2.

More explicitly we obtain

ρ(r ) = q

(

〈φ|~r , ↑〉
〈φ|~r , ↓〉

)(

1 0

0 1

)(

〈~r , ↑ |φ〉
〈~r , ↓ |φ〉

)

= q [φ∗(~r , ↑)φ(~r, ↑) + φ∗(~r , ↓)φ(~r , ↓)]

mx(r ) =
q~

2m

(

〈φ|~r , ↑〉
〈φ|~r , ↓〉

)(

0 1

1 0

)(

〈~r , ↑ |φ〉
〈~r , ↓ |φ〉

)

=
q~

2me
[φ∗(~r , ↑)φ(~r , ↓) + φ∗(~r , ↓)φ(~r, ↑)]

my (r ) =
q~

2m

(

〈φ|~r , ↑〉
〈φ|~r , ↓〉

)(

0 −i
i 0

)(

〈~r , ↑ |φ〉
〈~r , ↓ |φ〉

)

= −i q~
2m
[φ∗(~r , ↑)φ(~r , ↓)− φ∗(~r , ↓)φ(~r , ↑)]

mz(r ) =
q~

2m

(

〈φ|~r , ↑〉
〈φ|~r , ↓〉

)(

1 0

0 −1

)(

〈~r , ↑ |φ ↑〉
〈~r , ↓ |φ〉

)

=
q~

2m
[φ∗(~r , ↑)φ(~r, ↑)− φ∗(~r , ↓)φ(~r, ↓)]

The two-component spinor descriptions follows from the Pauli equation. The Pauli equation is
the non-relativistic limit of the Dirac equation, the relativistic one-particle equation for electrons.
In the Dirac equation each particle has four components. Two components describe spin-up and
spin-down electrons, and the two other components describe spin-up and spin-down positrons. The
positron[16] is the anti-particle of the electron. In the non-relativistic limit, the electronic and
positronic components become independent of each other, so that the electrons can be described by
a two-component spinor wave function.
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A Slater determinant of N spin-orbitals corresponds to 2N Slater determinants of one-component
one-particle orbitals, according to the N spin indices.
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Chapter 8

Many-Particle wave functions

8.1 Mathematical Preparation: The Levi-Civita Symbol or the

fully antisymmetric tensor

In the following we will represent wave functions by determinants. In order to work with determinants
the Levi-Civita symbol, which is also called the fully antisymmetric tensor, has been introduced. Here,
we define the fully antisymmetric tensor and derive some formulas, which will be needed later.

Definition

The Levi-Civita symbol1, also called the fully antisymmetric tensor

is a rank2 N Tensor defined by the following properties

• For ascending indices the Levi-Civita symbol has the value one:

ǫ1,2,3,...,N = 1

• The Levi-Civita symbol changes sign with any pairwise permutation of its indices

• The Levi-Civita symbol vanishes whenever at least two indices are pairwise identical

Relation to determinants

The determinant of a N × N matrix A is defined by the Levy-Civita symbol εi ,j,k,l ,... as

det[A] =
∑

i ,j,k,...

εi ,j,k,...A1,iA2,jA3,k · · ·

Vector product (not needed)

A common and useful application of the Levy-Civita Symbol is to express the vector product in three
dimensions by its components.

~a = ~b × ~c ⇔ ai =
∑

j,k

εi ,j,kbjck

1Tullio Levi-Civita (1873-1941): Italian mathematician. Invented the covariant derivative. Made tensor-algebra
popular, which was used in Einstein’s theory of general relativity.

2The rank is the number of indices that define a tensor element. Note, that there is another more limited definition
of the word rank.
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Laplace expansion theorem (not needed)

Let D be the determinant of an N × N matrix A, and let Di ,jN−1 be the determinant of the matrix
obtained from A by deleting the i-th line and the j-th column. Then

D =

N∑

i=1

(−1)i+jAi ,jDi ,jN−1

The Laplace expansion theorem can be applied twice, leading to

D =

N∑

i=1

N∑

k=1

(−1)i+j+k+lAi ,jAk,lDik,j lN−2

where Dik,j l is the determinant of the matrix A with the i-th and k-th line, and the j-th and l-th
column deleted.

8.2 Symmetry and quantum mechanics

In the following, we will be concerned with the symmetry of the Hamilton operator under permutation
of particles. Therefore, I will revisit the main symmetry arguments discussed in ΦSX:Quantum
Physics. This is a series of arguments may be worthwhile to keep in mind.

A symmetry of an object is a transformation, that leaves the appearance of the object unchanged.
For example a square is symmetric under four-fold rotation. A physical system, which is identified by
a Hamiltonian, is symmetric under a transformation, if every solution of the equation of motion, the
Schrödinger equation, is transformed onto another solution of the same equations.

1. Definition of a transformation operator. An operator Ŝ can be called a transformation, if it
conserves the norm for any state, that is if

∀|ψ〉 〈ψ|ψ〉 |φ〉=Ŝ|ψ〉= 〈φ|φ〉 (8.1)

2. A transformation operator Ŝ is unitary, that is

Ŝ†Ŝ = 1 (8.2)

Proof:

∀|ψ〉 〈ψ|Ŝ†Ŝ|ψ〉
Eq. 8.1
= 〈ψ|ψ〉 ⇒ Ŝ†Ŝ = 1

3. Definition of a symmetry: A system is called symmetric under the transformation Ŝ, if, for
any solution of the Schrödinger equation describing that system, also Ŝ|Ψ〉 is a solution of the
same Schrödinger equation. That is, if

(
i~∂t |Ψ〉 = Ĥ|Ψ〉

) |Φ〉def
=Ŝ|Ψ〉⇒

(
i~∂t |Φ〉 = Ĥ|Φ〉

)
(8.3)

4. The commutator of the Hamilton operator with its symmetry operator vanishes, that is [Ĥ, Ŝ]− =
0:
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Proof:

i~∂t |Φ〉 = Ĥ|Φ〉
|Φ〉def
=Ŝ|Ψ〉⇒ i~∂t Ŝ|Ψ〉 = ĤŜ|Ψ〉

∂t Ŝ=0⇒ Ŝ (i~∂t |Ψ〉) = ĤŜ|Ψ〉
i~∂t |Ψ〉=Ĥ|Ψ〉⇒ ŜĤ|Ψ〉 = ĤŜ|Ψ〉
(
ĤŜ − ŜĤ

)

︸ ︷︷ ︸

[Ĥ,Ŝ]−

|Ψ〉 = 0

Because this equation holds for any solution of the Schrödinger equation, it holds for any wave
function, because any function can be written as superposition of solutions of the Schrödinger
equation. (The latter form a complete set of functions.) Therefore

SYMMETRY AND COMMUTATOR

The commutator between the Hamilton operator Ĥ with its (time-independenta) symmetry
operators Ŝ vanishes.

[Ĥ, Ŝ]− = 0

Thus, one usually identifies a symmetry by working out the commutator with the Hamiltonian.

aFor time-dependent symmetry operators, the more general rule is [Ĥ, Ŝ]− = i~∂t Ŝ. An example for a
time-dependent symmetry is that between two relatively moving frames of inertia.

5. The matrix elements of the Hamilton operator between two eigenstates of the symmetry op-
erator with different eigenvalues vanish. That is

(
Ŝ|Ψs〉 = |Ψs〉s ∧ Ŝ|Ψs ′〉 = |Ψs ′〉s ′ ∧ s 6= s ′

)
⇒ 〈Ψs |Ĥ|Ψs ′〉 = 0

Proof: In the following we will need an expression for 〈ψs |Ŝ, which we will work out first:

• We start by showing that the absolute value of an eigenvalue of a unitary operator is equal
to one, that is s = eiφ where φ is real. With an eigenstate |ψs〉 of Ŝ we obtain

s∗〈ψs |ψs〉s
Ŝ|ψs 〉=|ψs 〉s
= 〈Ŝψs |Ŝψs〉 = 〈ψs | Ŝ†Ŝ︸︷︷︸

1̂

|ψs〉 = 〈ψs |ψs〉 ⇒ |s| = 1(8.4)

• Next, we show that the eigenvalues of the Hermitian conjugate operator Ŝ† of a unitary
operator Ŝ are the complex conjugates of the eigenvalues of Ŝ.

⇒ |ψs〉 Eq. 8.2
= Ŝ†Ŝ

︸︷︷︸

=1̂

|ψs〉
Ŝ|ψs 〉=|ψs 〉s
= Ŝ†|ψs〉s

⇒ Ŝ†|ψs〉s
Eq. 8.4
= |ψs〉 s∗s︸︷︷︸

=1

⇒ Ŝ†|ψs〉 = |ψs〉s∗

⇒ 〈ψs |Ŝ = s〈ψs |



98 8 MANY-PARTICLE WAVE FUNCTIONS

• With this, we are ready to show that the matrix elements of the Hamilton operator between
two eigenstates of the symmetry operator with different eigenvalues vanish.

0
[Ĥ,Ŝ]−=0
= 〈Ψs |[Ĥ, Ŝ]−|Ψs ′〉 = 〈Ψs |ĤŜ|Ψs ′〉 − 〈Ψs |ŜĤ|Ψs ′〉

Ŝ|Ψs 〉=|Ψs 〉s,etc.
= 〈Ψs |Ĥ|Ψs ′〉s ′ − s〈Ψs |Ĥ|Ψs ′〉 = 〈Ψs |Ĥ|Ψs ′〉(s ′ − s)
s 6=s ′⇒ 〈Ψs |Ĥ|Ψs ′ = 0

q.e.d

Thus we have shown that the Hamilton operator is block diagonal in a representation of eigenstates
of its symmetry operators. The eigenstates of the Hamilton operator can be obtained for each block
individually. For us it is more important that a wave function that starts out as an eigenstate of a
symmetry operator to a given eigenvalue, will always remain an eigenvalue to the same eigenvalue.
In other words the eigenvalue of the symmetry operator is a conserved quantity. (Note however, that
the eigenvalue of a symmetry operator usually has complex eigenvalues.)

The eigenvalues of the symmetry operators are related to the quantum numbers.

8.3 Slater determinants

Identical particles

Electrons with identical spin are indistinguishable. This says that there is no conceivable experiment
that discriminates between two electrons, except for their spin. Thus, there is a symmetry with
respect to exchange of two particles, and the Hamiltonian for indistinguishable particles commutes
with the permutation operator of two particles.

The two-particle permutation operator is defined as

P̂
(2)
i ,j Ψ(. . . , ~xi , . . . , ~xj . . .) = Ψ(. . . , ~xj , . . . , ~xi . . .)

The eigenstates of the Hamiltonian are eigenstates of the permutation operator. Because
(

P̂
(2)
i ,j

)2

=

1̂, the permutation operator has the two eigenvalues, namely +1 and −1. Thus, the wave functions
are fully symmetric or fully antisymmetric with respect to the permutation of two particle coordinates.
Particles with a symmetric wave function are called Bosons and particle with antisymmetric wave
function are called Fermions. Bosons are particles with integer spin such as photons, mesons,
gluons, gravitons, etc, which are usually related to an interaction, while Fermions are particles with
half-integer spin such as electrons, protons, neutrons, quarks, etc.

Unlike other symmetries, this symmetry is not a property of a specific Hamiltonian, but it is
a property of the particles themselves. If the particles are indistinguishable, there is no conceivable
Hamiltonian, that is not symmetric under permutation of two of these particles. If we could construct
only one Hamiltonian that is not symmetric, we could design an experiment, just by realizing this
Hamiltonian, that distinguishes two of such particles

The electron exchange is illustrated in Fig. 8.1. Except for the color, which distinguishes the two
electrons, left and right situations are identical. Note, that for the particle exchange both spatial
and spin-indices have to be exchanged simultaneously. Since the electrons are indistinguishable, no
distinguishing property like the color indicated can exist.

Fermions, such as electrons, have an antisymmetric wave function, that is

P̂
(2)
i ,j |Ψ〉 = −|Ψ〉
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=

r1 r2 r1 r2

r1 r2 r1 r2
=

r1 r2 r1 r2

=

Fig. 8.1: Demonstration of the particle exchange. For the two figures at the top, left and right
situations are identical except for a color of the particles. For identical particles there is no
property such as the color that allows one to distingish them. Thus Ψ(~x1, ~x2) = −Ψ(~x2, ~x1) or
Ψ(~r1, σ1,~r2, σ2) = −Ψ(~r2, σ2,~r1, σ1). In the bottom figure, the particle positions are exchanged but
not their spin. Thus the two configurations are not identical. In this case we may also view electrons
with up and down spin as distinguishable particles, because they have different spin.

Permutation operator

The most simple way to construct a many-particle wave function, is to take the product of one-
particle wave functions, such as

Φ(~x1, ~x2, . . .) = φa(~x1)φb(~x1) · · ·

However, such a product wave function is not yet antisymmetric with respect to permutation.
Therefore we need to antisymmetrize it. We use the N-particle permutation operator P̂i1,...,iN that is
defined as follows

N-PARTICLE PERMUTATION OPERATOR

P̂i1,...,iN :=

∫

d4x1 · · ·
∫

d4xN |~xi1 , . . . , ~xiN 〉〈~x1, . . . , ~xN | (8.5)

The permutation operator reorders the coordinates so that the first particle is placed onto the position
of the particle i1 and so on. This implies that that the coordinates of the i1-th particle are placed on
the first position, which is the one of the first particle

In order to make the function of the operator more transparent, let us rewrite it as an operator of
real-space functions. Consider a state |~y1, . . . , ~yN〉, which describes a particle distribution where the
first particle is at position ~y2, the second at ~y2 and so on. Application of the permutation operator
P̂i1,...,iN yields

P̂i1,...,iN |~y1, . . . , ~yN〉
Eq. 8.5
=

∫

d4x1 · · ·
∫

d4xN |~xi1 , . . . , ~xiN 〉 〈~x1, . . . , ~xN |~y1, . . . , ~yN〉
︸ ︷︷ ︸

δ(~x1−~y2)···δ(~xN−~yN)

= |~yi1 , . . . , ~yiN 〉

In the new state the first particle (first vector in the state) is at ~yi1 , that is at the position where the
particke i1 has been before the permutation.
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In the following it will be more convenient to work with the adjoint permutation operator.

P̂ †i1,...,iN
Eq. 8.5
=

∫

d4x1 · · ·
∫

d4xN |~x1, . . . , ~xN〉〈~xi1 , . . . , ~xiN | (8.6)

Because the permutation operator is unitary, its adjoint is at the same time its inverse. The application
of the adjoint permutation operator on an arbitrary wave function yields

P̂ †i1,...,iNΨ(~y1, . . . , ~yN) = 〈~y1, . . . , ~yN |P̂ †i1,...,iN |Ψ〉
Eq. 8.6
=

∫

d4x1 · · ·
∫

d4xN 〈~y1, . . . , ~yN |~x1, . . . , ~xN〉
︸ ︷︷ ︸

δ(~y1−~xi1 )···δ(~yN−~xiN )

〈~xi1 , . . . , ~xiN |Ψ〉
︸ ︷︷ ︸

Ψ(~x1,...,~xN)

= Ψ(~yi1 , . . . , ~xiN )

Antisymmetrize wave functions

The exchange operator Pi1,...,iN applied to a fermionic wave function has the eigenvalue −1 if the
sequence i1, . . . , iN is obtained by an odd number of permutations from regular order 1, 2, 3, . . . N,
and it has the eigenvalue +1 for an even number of permutations. These values are those of the
fully antisymmetric tensor or the Levy-Civita symbol.

EIGENVALUES OF THE PERMUTATION OPERATOR

A many-fermion state is an eigenstate of the permutation operators

Pi1,...,iN |ΨF 〉 = |ΨF 〉ǫi1,...,in (8.7)

with eigenvalues given by the fully antisymmetric tensor defined insection 8.1.
A many-boson state can be defined similarly, but the eigenvalues are +1 for any permutation of the
particle coordinates.

Pi1,...,iN |ΨB〉 = |ΨB〉ǫ2i1,...,in (8.8)

We can symmetrize a wave function |χ〉 with respect to a symmetry operation Ŝ to obtain an
eigenstate |ψα〉 of the symmetry eigenvalue sα = ei

2π
N
α

|ψα〉 =
N∑

n=0

Ŝn|χ〉s−nα =

N∑

n=0

(
Ŝ†
)n |χ〉s+nα (8.9)

With Eq. 8.9 we can construct a Fermionic state from a product state. A product state is in
general neither symmetric nor antisymmetric with respect to permutations.

In this case we do not only have a single symmetry operation with a given multiplicity, but a set of
non-commutating operations that from a symmetry group. The equation with a single operator can
be looked upon as the sum of all members in the symmetry group with the corresponding eigenvalues,
that are given by the eigenvalues of the generator of the group. We can generalize theis concept by
summing over all members of the group formed by all particle permutations with the corresponding
eigenvalues.

|ΦF 〉 =
N∑

i1,...,iN=1

P̂ †i1,...,iN |χ〉ǫi1,...,iN (8.10)
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Slater determinants

The most simple many-particle wave function is a product state |φ1, . . . , φN〉, which can be written
as

〈~x1, . . . , ~xN |φ1, . . . , φN〉 = 〈~x1|φ1〉 · · · 〈~xN |φN〉 = φ1(~x1) · · ·φN(~xN) (8.11)

A product state is not yet antisymmetric with respect to particle exchange, but with Eq. 8.9 it can
be antisymmetrized. Using the N-particle permutation operator P̂i1,...,iN and the fully antisymmetric
tensor ǫi1,...,iN we can antisymmetrize a product wave function.

|ΦF 〉 Eq. 8.12
=

1√
N!

N∑

i1,...,iN=1

P̂ †i1,...,iN |φ1, φ2, . . . , φN〉ǫi1,...,iN (8.12)

The pre-factor 1√
N!

is the required normalization for an orthonormal set of one-particle wave
functions: there are N! distinct permutations of the N orbitals. Product states that differ by a
permutation are orthonormal, if the one-particle states are orthonormal.

The corresponding wave function is

ΦF (~x1, ~x2, . . . , ~xN) =
1√
N!

N∑

i1,...,iN

ǫi1,...,iN P̂
†
i1,...,iN

φ1(~x1) · · ·φN(~xN)

=
1√
N!

N∑

i1,...,iN

ǫi1,...,iNφ1(~xi1) · · ·φN(~xiN ) (8.13)

When one exploits the connection between Levi-Civita Symbol and the determinant discusse in sec-
tion 8.1, the wave function Eq. 8.13 can also be written as a Slater determinant[17, 18]3

ΨF (~x1, . . . , ~xN) =
1√
N!
det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(~x1) φ1(~x2) . . . φ1(~xN)

φ2(~x1) φ2(~x2) . . . φ2(~xN)
...

...
...

...
φN(~x1) φN(~x2) . . . φN(~xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(8.14)

where ǫi ,j,k,... is the fully antisymmetric tensor defined in Sec. 8.1. The Slater determinant exploits
the property of the determinant, that it changes its sign unter permutation of two columns of a
matrix. In the Slater determinant the exchange of two columns corresponds to the exchange of two
particle coordinates.

An antisymmetric wave function can be constructed even from a non-orthogonal set of one-
particle orbitals by forming the corresponding determinant. However, unless the one-particle orbitals
are orthonormal, the evaluation of matrix elements between Slater determinants is a nearly hopeless
undertaking. Therefore, Slater determinants are usually built from an orthonormal set of one-particle
orbitals.

As an example, the two-particle Slater determinant |Sa,b〉 of two one-particle states φa(~x) and
φb(~x) is

Sa,b(~x1, ~x2) = 〈~x1~x2|Sa,b〉 =
1√
2

(

φa(~x1)φb(~x2)− φb(~x1)φa(~x2)
)

3According to a remark on Wikipedia, Heisenberg and Dirac proposed already in 1926 to write the antisymmetric
wave function in a form of a determinant.



102 8 MANY-PARTICLE WAVE FUNCTIONS

Bose wave functions

Analogous to the Slater determinant we can represent symmetrized product wave functions as a
permanent. The permanent of a matrix [[[A] can be written as

perm[A] =
∑

i1,...,iN

ǫ2i1,...,iNA1,i1A2,i2 · · ·AN,iN

We see from Eq. 8.8 that the permanent plays for bosons the same role as the determinant for
Fermions.

A Bose wave function obtained by symmetrization of a product wave function has the form

ΨB(~x1, . . . , ~xN) =
1√
N!

∑

i1,...,iN

ǫ2i1,...,iNφ1(~x1) · · ·φN(~xN)

If the one-particle states are orthonormal, also the resulting “Permanent-wave fuctions” built from
the same one-particle basisset are orthonormal.

General many-fermion wave function

It is important to realize that not every antisymmetric wave function can be represented as a Slater
determinant. Slater determinants are derived from product wave functions and thus have a rather
restricted form.

However, the Slater determinants that can be constructed from a complete, orthonormal set of
one-particle wave functions {|φ1〉, |φ1〉, . . .} form a complete orthonormal basis for antisymmetric
many-particle states. (without proof)4

A general N-particle state can be constructed as follows: Let us consider a complete and orthonor-
mal one-particle basis set |φ1〉, |φ2〉, . . .. A subset of N such basis functions, namely |φi1〉, |φi2〉, . . . , |φiN 〉
defines a particular Slater determinant |Si1,i2,...,iN 〉. A general antisymmetric N-particle state |Ψ〉 can
be written as a sum over all Slater determinants

|Ψ〉 =
∞∑

i1,i2,...,iN=1;ij 6=ik
|Si1,i2,...〉ci1,i2,...

where the ci1,i2,... are the (complex) expansion coefficients.

Number representation

We have learned that a Slater determinant is defined by a subset of N states from a given one-particle
basis. Thus we can form a vector with one-component for each one-particle orbital. If we set the
components equal to one for the orbitals in the set and equal to zero for all orbitals not in the set,
we arrive at the number representation for Slater determinants

|Si1,...,in〉 = |0, 0, 1︸︷︷︸
posi1

, 0, 0, 0, 1
︸︷︷︸

posi2

, 1
︸︷︷︸

posi3

, 0, . . .〉

This allows to write a general fermionic state in the form

|Ψ〉 =
1∑

σ1=0

1∑

σ2=0

. . .

1∑

σ∞=0

|σ1, σ2, . . . , σ∞〉cσ1,σ2,··· ,σ∞ =
∑

~σ

|~σ〉c~σ

4Note that the one-particle states need not be orthonormal to fulfill the completeness condition. The requirement
of orthonormal wave functions is necessary to obtain a orthonormal basis for the N-particle states and to make the
evaluation of matrix elements feasible.



Chapter 9

The Hartree-Fock approximation

The Hartree-Fock method[17, 19, 20] is an electronic structure method that is the work-horse
of quantum chemistry. Today it plays an important role as a starting point of more accurate and
involved methods. The Hartree Fock method had a predecessor, the Hartree method[21, 22], which,
however, does not play an important role in practice.

The basic idea of the Hartree-Fock method is to restrict the wave functions to single Slater
determinants[17]. For this Slater determinant, the energy is determined as expectation value of
the true many-particle Hamiltonian. That is, the Hartree Fock approximation takes the complete
electron-electron interaction into account. Furthermore the one-particle orbitals are optimized to
yield the lowest energy.

One can easily show that the Hartree-Fock energy always provides an upper bound for the energy.
The Hamilton operator is, up to a constant, positive definite and the ground state is the state with
the lowest energy. As we restricted our wave function to single Slater determinants, the wave function
is, normally, not the ground state and therefore higher in energy than the ground-state energy.

9.1 One-electron and two-particle operators

The Born-Oppenheimer Hamiltonian Eq. 12.4 for an N-electron system has the form

E = ENN + 〈Ψ|
N∑

i=1

ĥi +
1

2

∑

i 6=j
Ŵi ,j |Ψ〉

Where

ENN(~R1, . . . , ~RN)
def
=
1

2

M∑

i 6=j

e2ZiZj

4πǫ0|~Ri − ~Rj |
(9.1)

is the electrostatic repulsion between the nuclei, and the operators acting on the electrons can be
divided into one-particle terms ĥi and two-particle terms Ŵi ,j .

The one-particle terms describe the kinetic and potential energy of the electrons in an external
potential vext(~r )

ĥi =

∫

d4x1 · · ·
∫

d4xN |~x1, . . . , ~xN〉
[−~2
2me

~∇2~ri + vext(~ri)
]

〈~x1, . . . , ~xN | (9.2)

The external potential describes the electrostatic attraction between electrons and nuclei.

vext(~r ; ~R1, . . . , ~RM) = −
M∑

j=1

e2Zj

4πǫ0|~r − ~Rj |
(9.3)

103
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The two-particle operator describes the interaction between the electrons

Ŵi ,j =

∫

d4x1 · · ·
∫

d4xN |~x1, . . . , ~xN〉
e2

4πǫ0|~ri − ~rj |
〈~x1, . . . , ~xN | (9.4)

The indices on ĥi and Ŵi ,j determine, onto which electron coordinates the operator acts.
The one-particle operators act on the coordinates of one particle at a time. The kinetic energy

and the external potential are examples for one-particle operators, because they can be determined
for each particle individually and then be summed up. The interaction energy Eq. 9.4 on the other
hand depends on the coordinates of two particles simultaneously and is therefore a true two-particle
operator. It is the two-particle term that is the cause for the dazzling complexity of many-particle
physics.

Let us consider a general operator in real space

Â =

∫

d4x1 · · ·
∫

d4xN |~x1, . . . ~xN〉〈~x1, . . . ~xN |
︸ ︷︷ ︸

1̂

·Â
∫

d4x ′1 · · ·
∫

d4x ′N |~x ′1, . . . ~x ′N〉〈~x ′1, . . . ~x ′N |
︸ ︷︷ ︸

1̂

=

∫

d4x1 · · ·
∫

d4xN

∫

d4x ′1 · · ·
∫

d4x ′N |~x1, . . . ~xN〉

·〈~x1, . . . ~xN |Â|~x ′1, . . . ~x ′N〉〈~x ′1, . . . ~x ′N |

A general matrix element has therefore 2N arguments.

• If the matrix element of an operator has the special form

〈~x1, . . . ~xN |Â|~x ′1, . . . ~x ′N〉 =
N∑

i=1

A(~xi , ~x
′
i )
∏

j 6=i
δ(~xj − ~x ′j )

we call the operator a one-particle operator.

• If furthermore the function A(~x, ~x ′) has the special form that it is diagonal in the primed and
unprimed arguments, i.e.

A(~x, ~x ′) = a(~x)δ(~x − ~x ′)

we call the one-particle operator local.

• If the matrix element of an operator has the special form

〈~x1, . . . ~xN |Â|~x ′1, . . . ~x ′N〉 =
1

2

N∑

i ,j=1

A(~xi , ~xj , ~x
′
i , ~x
′
j )
∏

k 6={i ,j}
δ(~xk − ~x ′k)

we call the operator a two-particle operator.

• If furthermore the function A(~x1, ~x2, ~x ′1, ~x ′2) has the special form that it is diagonal in the
primed and unprimed arguments, i.e.

A(~x1, ~x2, ~x ′1, ~x ′2) = a(~x1, ~x2)δ(~x1 − ~x ′1)δ(~x2 − ~x ′2)

we call the two-particle operator local.
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9.2 Expectation values of Slater determinants

Let us now work out the expectation values for the one-particle and two particle operators for a
Slater determinant.

9.2.1 Expectation value of a one-particle operator

Here, we will work out the expectation value of a one-particle operator for a Slater determinant. An
example for such a one-particle operator is the non-interacting part of the Hamiltonian.

Explicit example for the two-particle wave function

The two-particle Slater determinant of two one-particle orbitals |φa〉 and |φb〉 has the form

〈~r1~r2|Ψ〉
︸ ︷︷ ︸

Ψ(~r1,~r2)

=
1√
2

[

〈~r1|φa〉〈~r2|φb〉 − 〈~r1|φb〉〈~r2|φa〉
]

︸ ︷︷ ︸

φa(~r1)φb(~r2)−φb(~r1)φa(~r2)

(9.5)

To avoid unnecessary complication we drop the spin-coordinates, that is we consider spin-less fermions.
As an specific example for a one-particle operator, we consider the particle-density operator n̂(~r)

defined as

n̂(~r) =

∫

d3r1

∫

d3r2 |~r1,~r2〉
[

δ(~r − ~r1) + δ(~r − ~r2)
]

〈~r1,~r2|

The electron density is

n(~r ) = 〈Ψ|n̂(~r)|Ψ〉

=

∫

d3r1

∫

d3r2 Ψ
∗(~r1,~r2)

[

δ(~r − ~r1) + δ(~r − ~r2)
]

Ψ(~r1,~r2)

Ψ(~r1,~r2)=−Ψ(~r2 ,~r1)
=

∫

d3r1

∫

d3r2 Ψ
∗(~r1,~r2)δ(~r − ~r1)Ψ(~r1,~r2)

+

∫

d3r1

∫

d3r2 Ψ
∗(~r2,~r1)δ(~r − ~r2)Ψ(~r2,~r1)

~r1↔~r2
= 2

∫

d3r1

∫

d3r2 Ψ
∗(~r1,~r2)δ(~r1 − ~r)Ψ(~r1,~r2)

Eq. 9.5
= 2

∫

d3r1

∫

d3r2
1√
2

[

φa(~r1)φb(~r2)− φa(~r2)φb(~r1)
]∗

· δ(~r − ~r1)
1√
2

[

φa(~r1)φb(~r2)− φa(~r2)φb(~r1)
]

=

∫

d3r1

∫

d3r2 φ
∗
a(~r1)φ

∗
b(~r2)δ(~r − ~r1)φa(~r1)φb(~r2)

−
∫

d3r1

∫

d3r2 φ
∗
a(~r1)φ

∗
b(~r2)δ(~r − ~r1)φa(~r2)φb(~r1)

−
∫

d3r1

∫

d3r2 φ
∗
a(~r2)φ

∗
b(~r1)δ(~r − ~r1)φa(~r1)φb(~r2)

+

∫

d3r1

∫

d3r2 φ
∗
a(~r2)φ

∗
b(~r1)δ(~r − ~r1)φa(~r2)φb(~r1)

= 〈φa|~r〉〈~r |φa〉 〈φb|φb〉
︸ ︷︷ ︸

=1

−〈φa|~r〉〈~r |φb〉 〈φb|φa〉
︸ ︷︷ ︸

=0

−〈φb|~r〉〈~r |φa〉 〈φa|φb〉
︸ ︷︷ ︸

=0

+〈φb|~r 〉〈~r |φb〉 〈φa|φa〉
︸ ︷︷ ︸

=1

= φ∗a(~r)φa(~r) + φ
∗
b(~r)φb(~r)
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Let us mention a few observations:

• The number of terms is drastically reduced just because we have used an orthonormal set of
one-particle wave functions. This is the sole reason of using orthonormal basissets in many-
particle physics.

• The sum over particles is turned into a sum over orbitals. This is true for a Slater determinant,
but not for a general many particle states.

• The antisymmetry of the wave function ensures that the same expectation value is obtained if
we work out a property of the first or the second electron.

General derivation

Now we will determine the same result in its full generality: First, we evaluate only the matrix element
of the one-particle operator ĥ1, that acts only on the coordinates of only one particle, namely the first.
This result is then generalized for the other particles and the summed up to obtain the expectation
value of the non-interacting part of the Hamiltonian..

To be concise, we write here the detailed expressions for the matrix elements of the one-particle
Hamilton operator, we have in mind

〈φ|ĥ|φ〉 =
∫

d4x

∫

d4x ′ 〈φ|~x〉

δ(~r − ~r ′)δσ,σ′
(

− ~
2

2me
~∇2 + v(~r)

)

︸ ︷︷ ︸
︷ ︸︸ ︷

〈~x |ĥ|~x ′〉 〈~x ′|φ〉

=
∑

σ

∫

d3r φ∗(~r , σ)

[−~2
2me

~∇2 + vext(~r)
]

φ(~r , σ) (9.6)

The one-particle Hamiltonian ĥj acting on the j-th particle in a many particle wave function Ψ〉
yields the expectation value

〈Ψ|ĥj |Ψ〉 =
∫

d4x1 . . .

∫

d4xN Ψ
∗(~x1, . . . , ~xN)

(−~2
2me

~∇2j + vext(~rj)
)

Ψ(~x1, . . . , ~xN)

so that the matrix element for two product wave functions is

〈φ1, . . . , φN |ĥj |ψ1, . . . , ψN〉 = 〈φ1|ψ1〉 . . . 〈φj |ĥ|ψj 〉 . . . 〈φN |ψN〉 (9.7)

The Slater determinant, given in Eq. 8.14, has the form

〈~x1, . . . , ~xN |Ψ〉 =
1√
N!

N∑

i1,...,iN=1

ǫi1,...,iN 〈~x1|φi1〉 · · · 〈~xN |φiN 〉 (9.8)

Thus, the matrix element of a one-particle operator Eq. 9.2 acting only on the first electron
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coordinate is

〈Ψ|
N∑

i=1

ĥi |Ψ〉 = N〈Ψ|ĥ1|Ψ〉

Eq. 9.8
= N · 1

N!

N∑

i1,i2,...,iN

N∑

j1,j2,...,jN

ǫi1,i2,...,iN 〈φi1 . . . φiN |ĥ1|φj1 . . . φjN 〉ǫj1,j2,...,jN

Eq. 9.7
= N

1

N!

N∑

i1,i2,...,iN

N∑

j1,j2,...,jN

ǫi1,i2,...,iNǫj1,j2,...,jN 〈φi1 |ĥ1|φj1〉 〈φi2 |φj2〉
︸ ︷︷ ︸

δi2 ,j2

· · · 〈φiN |φjN 〉
︸ ︷︷ ︸

δiN ,jN

= N
1

N!

N∑

i1,j1=1

〈φi1 |ĥ1|φj1〉
N∑

i2,...,iN

ǫi1,i2,...,iN ǫj1,i2,...,iN

︸ ︷︷ ︸

δi1,j1 (N−1)!

=

N∑

j=1

〈φj |ĥ1|φj〉

In the last step we exploited, that the sum over j1 only contributes when j1 = i1. There is only one
orbital left if all the orbitals but the first are determined. Thus, the first orbital must be the same
for both Levi-Civita Symbols.

Thus, we obtain the expectation value of the one-particle Hamiltonian for a Slater determinant
|Ψ〉 as

EXPECTATION VALUE OF A ONE-PARTICLE OPERATOR WITH A SLATER-DETERMINANT

〈Ψ|
N∑

i=1

ĥi |Ψ〉 =
N∑

i=1

〈φi |ĥ|φi〉 (9.9)

Here, |Ψ〉 is a N-particle Slater-determinant built from the one-particle orbitals|φi〉, and
∑N

i=1 ĥi is a
one-particle operator.

Expectation values of common one-particle operators with Slater determinants

Analogously, the expectation value of any one-particle operator with a Slater determinant can be
represented by a sum over one-particle orbitals. Thus, we obtain the expression for the density

n(~r) = 〈Ψ|
N∑

i=1

∑

σ

(

|~r , σ〉〈~r , σ|
)

i
|Ψ〉 =

N∑

i=1

∑

σ

φ∗i (~r , σ)φi(~r , σ) (9.10)

where

(

|~r〉〈~r |
)

i

def
=

∫

d4x1 · · ·
∫

d4xN |~x1, . . . , ~xN〉δ(~r − ~ri)〈~x1, . . . , ~xN |

The expectation valie of the kinetic energy for a Slater determinant has the form

Ekin = 〈Ψ|
N∑

i=1

~̂p2i
2me
|Ψ〉 =

N∑

i=1

∑

σ

∫

d3r φ∗i (~r , σ)
−~2
2me

~∇2φi(~r , σ) (9.11)
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9.2.2 Expectation value of a two-particle operator

Let us now turn to the two-particle term. We introduce the symbol

W (~x, ~x ′) =
e2

4πǫ0|~r − ~r ′|

The interaction is independent of the spin index. Furthermore it is local in the two coordinates.1

We start out as for the expectation value of a one-particle operator and consider only the inter-
action between the first two electrons. That is the operator acts only on the first two sets of particle
coordinates.

EW = 〈Ψ|
1

2

N∑

i 6=j
Ŵi ,j |Ψ〉 =

N(N − 1)
2

〈Ψ|Ŵ1,2|Ψ〉

=
N(N − 1)
2

1

N!

N∑

i1,i2,...,iN

N∑

j1,j2,...,jN

ǫi1,i2,...,iNǫj1,j2,...,jN 〈φi1 . . . φiN |Ŵ12|φj1 . . . φjN 〉

=
1

2 · (N − 2)!

N∑

i1,i2,...,iN

N∑

j1,j2,...,jN

ǫi1,i2,...,iNǫj1,j2,...,jN 〈φi1φi2 |Ŵ12|φj1φj2〉 〈φi3 |φj3〉
︸ ︷︷ ︸

δi3 ,j3

· · · 〈φiN |φjN 〉
︸ ︷︷ ︸

δiN ,jN

=
1

2 · (N − 2)!

N∑

i1,i2,j1,j2

〈φi1φi2 |Ŵ12|φj1φj2〉
N∑

i3,...,iN

ǫi1,i2,i3...,iNǫj1,j2,i3...,iN

︸ ︷︷ ︸

(N−2)!ǫi1 ,i2 ǫj1 ,j2 for i1, i2 ∈ {j1, j2}

=
1

2

N∑

i1,i2

∑

j1,j2∈{i1,i2}
〈φi1φi2 |Ŵ12|φj1φj2〉 ǫi1,i2ǫj1,j2

︸ ︷︷ ︸

δi1 ,j1δi2 ,j2−δi1 ,j2δi1 ,j2

=
1

2

N∑

i1,i2

(

〈φi1φi2 |Ŵ12|φi1φi2〉 − 〈φi1φi2 |Ŵ12|φi2φi1〉
)

Note, that we exploited in the last step that the two interaction terms cancel when the indices i1
and i2 are identical. Therefore they need not be excluded from the sum. The latter formula is more
convenient to discuss the physical implications, while the former is commonly used in the quantum
chemical literature.

We recognize the result of the indistinguishability of the electrons: The interaction between any
two electrons is identical to any other pair. Since there are N(N−1)

2 ordered pairs and thus N(N − 1)
unordered pairs, the pre factor 1

N(N−1) drops out, and we obtain

〈Ψ|1
2

N∑

i 6=j
Ŵi ,j |Ψ〉 =

1

2

N∑

i ,j=1

[

〈φiφj |Ŵ |φiφj〉 − 〈φiφj |Ŵ |φjφi〉
]

(9.12)

1A general two particle operator has the form

Ŵ1,2 =

∫

dx1 · · ·
∫

dxN

∫

dx ′1 · · ·
∫

dx ′N |~x1, . . . ~xN〉〈~x1, . . . ~xN |Ŵ1,2|~x ′1, . . . ~x ′N〉〈~x ′1, . . . ~x ′N |

=

∫

dx1 · · ·
∫

dxN

∫

dx ′1

∫

dx ′2|~x1, . . . ~xN〉〈~x1, . . . ~xN |Ŵ1,2|~x ′1, ~x ′2, ~x3, . . . ~xN〉〈~x ′1, ~x ′2, ~x3, . . . ~xN |

=

∫

dx1 · · ·
∫

dxN

∫

dx ′1

∫

dx ′2|~x1, . . . ~xN〉〈~x1, ~x2|Ŵ1,2|~x ′1, ~x ′2〉〈~x ′1, ~x ′2, ~x3, . . . ~xN |

Thus, a general two particle operator in nonlocal in the two particle coordinates and therefore depends on four argu-
ments.
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Hartree Exchange

Wijij Wijji

i

i

j

j

j

j

i

i

Fig. 9.1: The left diagram describes that two particle are scattered by the Coulomb interaction.
The right diagram describes the same process, but the two electrons are exchanged. The second
process is possible, because the two electrons are indistinguishable so that we cannot detect if the
two electrons are still the same or not.

To be concise, we write here the detailed expressions for the matrix elements used in the above
equation Eq. 9.12

〈φaφb|Ŵ |φcφd〉 =
∑

σ,σ′

∫

d3r

∫

d3r ′ φ∗a(~r , σ)φ
∗
b(~r
′, σ′)

e2

4πǫ0|~r − ~r ′|
φc(~r , σ)φd(~r ′, σ

′)

(9.13)

Homework: Work out the expectation value of the Coulomb interaction between two electrons
for a two-electron Slater determinant. Consider once a Slater determinant from non-orthonormal
one-particle orbitals and once for orthonormal one-particle orbitals. Investigate the role of the spin
indices.

9.3 Hartree energy

The surprising fact of Eq. 9.12 is the appearance of two terms. Therefore let us try to give some
physical meaning to the two contributions.

The first interaction term in Eq. 9.12 is the so-called Hartree energy. The Hartree energy turns
out to be the classical electrostatic interaction of the electron density.

EH =
1

2

∑

i ,j

∑

σ,σ′

∫

d3r

∫

d3r ′ φ∗i (~r , σ)φ
∗
j (~r
′, σ′)

e2

4πǫ0|~r − ~r ′|
φi(~r , σ)φj(~r ′, σ

′)

=
1

2

∫

d3r

∫

d3r ′
[
∑

i ,σ

φ∗i (~r , σ)φi(~r , σ)

]

︸ ︷︷ ︸

n(~r)

e2

4πǫ0|~r − ~r ′|




∑

j,σ′

φ∗j (~r
′, σ′)φj(~r ′, σ

′)





︸ ︷︷ ︸

n(~r ′)

(9.14)

The equation can be simplified using the definition of the charge density ρ(~r), or the electron density
n(~r), as

ρ(~r) = −en(~r) = −e
N∑

i=1

∑

σ

φ∗i (~r , σ)φi(~r , σ)

︸ ︷︷ ︸

n(~r )
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Thus, we obtain the final expression for the Hartree energy

HARTREE ENERGY

EH =
1

2

∫

d3r

∫

d3r ′
ρ(~r)ρ(~r ′)

4πǫ0|~r − ~r ′|
(9.15)

9.4 Exchange energy

Exchange energy

The Hartree energy is clearly not the correct electrostatic energy, as it describes the interaction of
N electrons with N electrons. However, each electron can only interact with N − 1 electrons. Thus,
the Hartree term also includes, incorrectly, the interaction of each electron with itself.

This so-called self interaction is subtracted by the so-called exchange energy, the second in-
teraction term in Eq. 9.12

EX = −
1

2

∑

i ,j

∑

σ,σ′

∫

d3r

∫

d3r ′ φ∗i (~r , σ)φ
∗
j (~r
′, σ′)

e2

4πǫ0|~r − ~r ′|
φj(~r , σ)φi(~r ′, σ

′)

(9.16)

The exchange term consists of the electrostatic interaction of densities

ni ,j(~r)
def
=
∑

σ

φi(~r , σ)φ
∗
j (~r , σ)

The exchange energy can be written as

EX = −
1

2

∑

i ,j

e2ni ,j(~r)nj,i(~r ′)

4πǫ0|~r − ~r ′|

while the Hartree term has the form

EH =
1

2

∑

i ,j

e2ni ,i(~r)nj,j(~r ′)

4πǫ0|~r − ~r ′|

Self interaction

All pair densities with different indices integrate to zero and the one with identical indices integrate
to one, that is

∫

d3r ni ,j(~r) = 〈φj |φi 〉 = δi ,j

Thus, if we can expect that the dominant contribution results from the diagonal terms. This so-called
self-interaction energy

ESI = +
1

2

∑

i

∑

σ,σ′

∫

d3r

∫

d3r ′ φ∗i (~r , σ)φ
∗
i (~r
′, σ′)

e2

4πǫ0|~r − ~r ′|
φi(~r , σ)φi(~r ′, σ

′)

= −1
2

∑

i

∫

d3r

∫

d3r ′
e2ni i(~r)ni i(~r ′)

4πǫ0|~r − ~r ′|
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describes the electrostatic interaction of each electron with itself, that has been included in the Hartree
correction. There is a well-known electronic structure method, based on density functional theory,
which uses the same trick to get rid of artificial self-interaction terms.[23]. This theory subtracts
the self energy from the Hartree term and thus includes the so-called self-interaction correction
ESIC = −ESI .

Exchange and spin alignment

Only electron pairs with identical spin contribute the exchange energy. This can be shown when
one considers one-particle spin-orbitals with defined spin along the z-axis. That is, each one-particle
spin-orbital has only one spin component, the other being zero.

• If the two orbitals have the same spin, for example pointing into the +~ez direction, they can be
written as

φi(~x) =

(

φi(~r , ↑)
0

)

and φj (~x) =

(

φj(~r , ↑)
0

)

The resulting exchange-energy would be formed from the densities

∑

σ

φi(~r , σ)φ
∗
j (~r , σ) = φi(~r , ↑)φ∗j (~r , ↑)

so that its contribution has the form

∆EX = −
1

2

∑

σ

∫

d3r

∫

d3r ′
e2φ∗i (~r , σ)φj(~r , σ)φ

∗
j (~r
′, σ)φi(~r ′, σ)

4πǫ0|~r − ~r ′|

= −1
2

∑

σ

∫

d3r

∫

d3r ′
e2φ∗i (~r , ↑)φj(~r , ↑)φ∗j (~r ′, ↑)φi(~r ′, ↑)

4πǫ0|~r − ~r ′|

• If the two orbitals have the opposite spin, they can be written as

φi(~x) =

(

φi ,↑(~r)

0

)

and φj(~x) =

(

0

φj,↓(~r)

)

The contribution to the exchange energy vanishes, because

∑

σ

φi(~r , σ)φj (~r , σ) = φi(~r , ↑) · 0 + 0 · φj(~r , ↓) = 0

HUND’S RULE AND FERROMAGNETISM

Exchange acts only between electrons pairs with the same spin. Because exchange counteracts the
Coulomb repulsion due to its changed sign, it favors if many electrons have the same spin.
A result is Hund’s 1st rule: For a given electron configuration, the term with maximum multiplicity
has the lowest energy. The multiplicity is equal to , where is the total spin angular momentum for
all electrons. The term with lowest energy is also the term with maximum .
The same effect is responsible for the tendency of some solids to become ferromagnetic. Due to
the finite band width of metals, spin-alignment leads to some loss of kinetic energy. The balance of
kinetic energy and exchange determines whether ferromagnetism wins.



112 9 THE HARTREE-FOCK APPROXIMATION

9.5 Hartree-Fock equations

The Hartree Fock energy is an upper bound

The Hartree-Fock method yields an estimate EHF for the ground state energy EGS as

EGS ≤ EHF = min
[φi (~x)]

[

ENN +

N∑

i=1

〈φi |ĥ|φi〉

+
1

2

N∑

i ,j=1

[

〈φiφj |Ŵ |φiφj〉 − 〈φiφj |Ŵ |φjφi 〉
]

−
∑

i ,j

Λi ,j [〈φi |φj〉 − δi ,j ]
]

The last term ensures the orthonormality of the one-particle orbitals using the method of Lagrange
multipliers. The matrix elements are defined in Eq. 9.6 and Eq. 9.13. The energy ENN describes the
Coulomb repulsion of the nuclei as defined in Eq. 9.1.

The minimum condition yields the Hartree-Fock equations.

Hartree-Fock equations

Wirtinger derivatives
The derivation is almost analogous to the derivation of the Euler-Lagrange equations. Special is that
here we work with fields, the one-particle wave functions, and that the variational parameters are
complex. It is advantageous to use the Wirtinger derivatives, which are described briefly in ΦSX:
Klassische Mechanik.
The essence of Wirtinger derivatives is that we can write the identity

df (Re[c], Im[c]) =
df

dRe[c]
dRe[c] +

df

d Im[c]
d Im[c] =

df

dc
dc +

df

dc∗
dc∗ = df (c, c∗)

for the first variation of f . Thus, we can form the variations of a function of complex arguments, as
if the variable and its complex conjugate were completely independent variables.
For the functional derivatives we use

dΨ∗n(~r , σ)

dΨ∗k(~r0, σ0)
= δ(~r − ~r0)δσ,σ0δn,k

dΨn(~r , σ)

dΨ∗k(~r0, σ0)
= 0




−~2
2me

~∇2 +
M∑

j=1

−e2Z
4πǫ0|~r − ~Rj |

+

∫

d3r ′
e2n(~r ′)

4πǫ0|~r − ~r ′|



φi(~r , σ)

−
N∑

j=1

∑

σ′

∫

d3r ′
e2φ∗j (~r

′, σ′)φi(~r ′, σ′)

4πǫ0|~r − ~r ′|
φj(~r , σ)−

N∑

j=1

φj(~r , σ)Λj,i = 0

Note that this is not a simple Schrödinger equation, because it mixes all orbitals.
However, we can rewrite the equations to obtain a true Hamiltonian, which acts on all wave
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functions in the same way:



−~2
2me

~∇2 +
M∑

j=1

−e2Z
4πǫ0|~r − ~Rj |

+

∫

d3r ′
e2n(~r ′)

4πǫ0|~r − ~r ′|



φi(~r , σ)

−
∑

σ′

∫

d3r ′





N∑

j=1

e2φ∗j (~r , σ)φj(~r
′, σ′)

4πǫ0|~r − ~r ′|





︸ ︷︷ ︸

−VX,σ,σ′(~r,~r ′)=−〈~x |VX |~x ′〉

φi(~r ′, σ
′)−

∑

j

φj(~r , σ)Λj,i = 0 (9.17)

This form actually shows that the one-particle orbitals can be superimposed so that the matrix
ΛΛΛ becomes diagonal. It can be shown that the system of equations is invariant under a unitary
transformation of the one-particle orbitals. Thus, one can use the matrix that diagonalizes ΛΛΛ, to
bring the equations into a diagonal form. Hence we can write the Hartree-Fock equations as true
eigenvalue equations.

Non-local potential

However the price to pay is that we have to deal with a truly non-local potential in the exchange
term. What is a non-local potential? Consider an arbitrary operator Â

〈ψ|Â|φ〉 = 〈ψ|
[∫

d3r |~r 〉〈~r |
]

︸ ︷︷ ︸

1̂

Â

[∫

d3r ′ |~r ′〉〈~r ′|
]

︸ ︷︷ ︸

1̂

|φ〉

=

∫

d3r

∫

d3r ′ 〈ψ|~r 〉
︸ ︷︷ ︸

ψ∗(~r )

〈~r |Â|~r ′〉
︸ ︷︷ ︸

A(~r,~r ′)

〈~r ′|φ〉
︸ ︷︷ ︸

φ(~r ′)

=

∫

d3r

∫

d3r ′ ψ∗(~r)A(~r , ~r ′)φ(~r ′)

Thus, a general one-particle operator has always two sets of coordinates in its real space represen-
tation. We call them non-local because they act on two positions at the same time. It is a special
property of most potentials, that they are local. For a local operator or local potential V̂ the real
space matrix elements are diagonal in real space, that is

V (~r , ~r ′)
def
=〈~r |V̂ |~r ′〉 = V (~r)δ(~r − ~r ′)

so that its matrix elements can be represented by a single real space integral.

Self-consistency cycle

The Hartree-Fock equations are self-consistent equations. This means that the Hamiltonian de-
pends itself on the wave functions. Thus, the problem has to be solved iteratively.

• We start out with trial wave functions to determine the Hamiltonian.

• The we obtain new wave functions from the eigenvalue problem

• New and old wave functions are mixed, which is often necessary to obtain convergence of the
cycle.

If the new and old wave functions or the new and old Hamiltonian are identical, the wave functions
are consistent with the Hamiltonian and the Hartree Fock equations are solved.

In the quantum chemical literature the term self-consistent equations is used synonymous with
Hartree-Fock equations. This is misleading because there are many other schemes that also require
a self-consistent cycle.
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Fock operator

We can now write the Hamilton operator of the Hartree Fock equation, namely the so-called Fock
operator

FOCK OPERATOR

Ĥ =
∑

σ

∫

d3r |~r , σ〉




−~2
2me

~∇2 −
M∑

j=1

Zje
2

4πǫ0|~r − ~Rj |
+

∫

d3r ′
n(~r ′)e2

4πǫ0|~r − ~r ′|



 〈~r , σ|

−
∑

σ,σ′

∫

d3r

∫

d3r ′ |~r , σ〉
e2φ∗j,σ(~r)φj,σ′(~r

′)

4πǫ0|~r − ~r ′|
〈~r ′, σ′|

+
[

1̂−
n∑

j=1

|φj〉〈φj |
]

Ĉ
[

1̂−
n∑

j=1

|φj〉〈φj |
]

The operator Ĉ in the last term is completely arbitrary. Because of the projection operator on both
sides, it only acts on the “unoccupied” one-particle wave functions. Because this Hamilton operator
is never applied to the unoccupied states, it is also irrelevant. We included this term here to show
that the Hartree-Fock operator contains a lot of arbitrariness and that furthermore the action of the
operator on the unoccupied states is arbitrary.

Note that the Hartree Fock total energy is not identical to the sum of one-particle energies as it
is the case for non-interacting particles.

9.6 Hartree-Fock of the free-electron gas

Let us now study the free-electron gas in the Hartree Fock approximation. Our goal is to determine
the changes of the dispersion relation, when the electron-electron interaction is switched on.

First we determine non-local potential as defined in Eq. 9.17.

Vx(~x, ~x ′)
Eq. 9.17
= −




∑

j

e2φ∗j (~x)φj(~x
′)

4πǫ0|~r − ~r ′|



 (9.18)

Eq. D.3
=

e2δσ,σ′

4πǫ0s

1

(2π)3
4π

3
k3F

[

3
(kF s) cos(kF s)− sin(kF s)

(kF s)3

]

(9.19)

where s = |~r − ~r ′| and kF is the Fermi momentum.
Now we need to evaluate the expectation values of this potential in order to obtain the energy

shifts:

dǫ~k,σ =
1

Ω

∫

d3r

∫

d3r ′ Vx(|~r − ~r ′|, σ, σ′)ei~k(~r−~r ′)

= − e2

4πǫ0

2kF
π

[
1

2
+
1− a2
4a

ln

∣
∣
∣
∣

1 + a

1− a

∣
∣
∣
∣

]

Here, a = |~k |/kF . The function in parenthesis is shown in Fig. 9.3
We find, as shown in Fig. 9.4, that the occupied band width is larger in Hartree-Fock than for

the non-interacting free electrons. However, the experimental band with of real free-electron-like
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Fig. 9.2: The shape of the non-local exchange potential (right) for a free electron gas as calculated
in the Hartree Fock method. The dashed line corresponds to a Coulomb interaction. The function
3 x cos(x)−sin(x)x3 is shown on the left-hand side.
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Fig. 9.3: The function f (a) = −
(
1
2 +

1−a2
4a ln

∣
∣ 1+a
1−a
∣
∣

)

as function of a = k/kF . Note that the slope

for k = kF is infinite. For k >> kF the function approaches zero.

materials is smaller. For potassium the band width of the free electron gas is 2 eV. The Hartree-Fock
result is 5.3 eV, while the band width of real potassium is in the range 1.5-1.6 eV.[?]

A second problem[?] of the Hartree-Fock theory is that the density of states at the Fermi level
vanishes. This is again in contradiction with experiment, which is described pretty well with

√
ǫ-

behavior of the density of states. The experimental result is closer to the free electron gas. The
discrepancy is related to the fact that the electron can not respond to the potential describing the
interaction. Note that the wave functions are still plane waves.2

2This argument as such is not conclusive. The band structure is obtained for a fixed potential. The potential
depends explicitly on the number of electrons. In an experiment the Fermi-level is measured for example by extracting
an electron, which changes the electron number and therefore the interaction potential of Hartree Fock.
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EF
non−interacting

E

k
Hartree−Fock
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Fig. 9.4: Dispersion relation of the free electron gas as calculated with Hartree Fock and without
interactions. The two dispersion relations are shifted so that their Fermi-level agrees.

9.7 Beyond the Hartree Fock Theory: Correlations

Fig. 9.5: Per-Olov Löwdin,
Swedish physicist and
theoretical chemist 1916-
2000. Courtesy of the
American Philosophical
Society.

The result obtained by the Hartree Fock approximation always lies above
the correct result. The energy difference is called electron correlation.
The term was coined by Per-Olov Löwdin. [P.-O. Löwdin, “Correlation
Problem in Many-Electron quantum mechanics”, Adv. Chem. Phys. 2,
207 (1959)]

In this article I will point out a number of failures of Hartree Fock
theory, in order to introduce into the terminology of correlations.

9.7.1 Left-right and in-out correlation

The notation of left-right correlation and in-out correlation has been
termed by Kolos and Roothaan[24], who performed accurate calcula-
tions for the hydrogen molecule.

Left-right correlation describes that the two electrons in one bond
are most likely on the opposite sides of the bond. This principle is
violated by a Slater determinant build from bonding orbitals.

Let us consider a hydrogen molecule. We start from a one-particle
basis |L, ↑〉, |L, ↓〉, |R, ↑〉, |R, ↓〉, where L refers to the left atom and R refers to the right atom. First
we transform the basis onto bonding and antibonding orbitals.

|B, ↑〉 def
=
1√
2

(

|L, ↑〉+ |R, ↑〉
)

(9.20)

|B, ↓〉 def
=
1√
2

(

|L, ↓〉+ |R, ↓〉
)

(9.21)

|A, ↑〉 def
=
1√
2

(

|L, ↑〉 − |R, ↑〉
)

(9.22)

|A, ↓〉 def
=
1√
2

(

|L, ↓〉 − |R, ↓〉
)

(9.23)
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Now we form a Slater determinant from the two bonding orbitals

Ψg(~r1, σ1,~r2, σ2) =
1√
2

(

〈~r1, σ1|B, ↑〉〈~r2, σ2|B, ↓〉 − 〈~r1, σ1|B, ↓〉〈~r2, σ2|B, ↑〉
)

=
1

2

{

〈~r1, σ1|
(

|L, ↑〉+ |R, ↑〉
)

〈~r2, σ2|
(

|L, ↓〉+ |R, ↓〉
)

−〈~r1, σ1|
(

|L, ↓〉+ |R, ↓〉
)

〈~r2, σ2|
(

|L, ↑〉+ |R, ↑〉
)

=
1

2

{(

〈~r1, σ1||L, ↑〉〈~r1, σ1||R, ↑〉
)(

〈~r2, σ2|L, ↓〉+ 〈~r2, σ2|R, ↓〉
)

−
(

〈~r1, σ1|L, ↓〉〈~r1, σ1|R, ↓〉
)(

〈~r2, σ2|L, ↑〉+ 〈~r2, σ2|R, ↑〉
)

=
1

2

{(

〈~r1, σ1|L, ↑〉〈~r2, σ2|L, ↓〉 − 〈~r1, σ1|L, ↓〉〈~r2, σ2|L, ↑〉
)

+
(

〈~r1, σ1|L, ↑〉〈~r2, σ2|R, ↓〉 − 〈~r1, σ1|R, ↓〉〈~r2, σ2|L, ↑〉
)

+
(

〈~r1, σ1|R, ↑〉〈~r2, σ2|L, ↓〉 − 〈~r1, σ1|L, ↓〉〈~r2, σ2|R, ↑〉
)

+
(

〈~r1, σ1|R, ↑〉〈~r2, σ2|R, ↓〉 − 〈~r1, σ1|R, ↓〉〈~r2, σ2|R, ↑〉
)

=
1√
2
[(↑↓, 0) + (↓, ↑) + (↑, ↓) + (0, ↑↓)]

Thus, the Slater determinant of the bonding orbitals contains determinants where both electrons are
either both localized to the right or with both electrons localized on the left side. These ionized
configuration lie high in energy of the bond is long. This is the explanation that the Hartree Fock
theory in this form results in a too large dissociation energy.

In order to obtain the correct limit, namely 1√
2
(↑, ↓) + (↓, ↑) we need to mix in the Slater deter-

minant with the antibonding orbitals.

Ψu(~r1, σ1,~r2, σ2) =
1√
2
[(↑↓, 0)− (↓, ↑)− (↑, ↓) + (0, ↑↓)]

9.7.2 In-out correlation

• “in-out” correlation

• left-right correlation

• angular correlation

• radial correlation

• dynamic

• nondynamic

• near-degeneracy

• long-range

• shortrange

9.7.3 Spin contamination

9.7.4 Dynamic and static correlation

In quantum chemistry the definition of dynamic and static correlation is opposite to that used by
physicists. In Quantum chemistry, static correlation is the effect of very few Slater determinants that
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contribute to the ground state with approximately equal weight. That static correlation is present if
the dominant Slater determinant has a weight less than about 95% of the complete wave function.

Dynamic correlation on the other hand are the small contribution of many Slater determinants,
lowering the energy. Dynamic correlation is important to describe the cusp condition: The Coulomb
hole has a cusp in the density at the site of the observer electron. Because all one-particle orbitals
are smooth, many Slater-determinants are required to build up this cusp as superposition of smooth
wave functions.



Chapter 10

Density functional theory

from P.E. Blöchl, Ab-initio Simulations with the CP-PAW code: A tutorial

10.1 Introduction

On the nanoscale, materials around us have a surprisingly simple structure: The standard model of
solid state physics and chemistry only knows of two types of particles, namely the nuclei making
up the periodic table and the electrons. Only one kind of interaction between them needs to be
considered, namely the electrostatic interaction. Even magnetic forces are important only in rare
occasions. All other fundamental particles and interactions are irrelevant for chemistry.

The behavior of these particles can be described by the Schrödinger equation (or better the
relativistic Dirac equation), which is easily written down. However, the attempt to solve this equation
for any system of interest fails miserably due to what Walter Kohn termed the exponential wall [25].

To obtain an impression of the powers of the exponential wall, imagine the wave function of a N2
molecule, having two nuclei and fourteen electrons. For N particles, the Schrödinger equation is a
partial differential equation in 3N dimensions. Let us express the wave function on a grid with about
100 points along each spatial direction and let us consider two spin states for each electron. Such a
wave function is represented by 2141003×16 ≈ 10100 complex numbers. A data server for this amount
of data, made of current tera-byte hard disks, would occupy a volume with a diameter of 1010 light
years!

Treating the nuclei as classical particles turned out to be a good approximation, but the quantum
nature of the electrons cannot be ignored. A great simplification is to describe electrons as non-
interacting quasi particles. Instead of one wave function in 3N dimensions, one only needs to describe
N wave functions in three dimensions each, a dramatic simplification from 10100 to 107 numbers.

While the independent-particle model is very intuitive, and while it forms the basis of most text
books on solid-state physics, materials physics, and chemistry, the Coulomb interaction between
electrons is clearly not negligible.

Here, density-functional theory [26, 27] comes to our rescue: it provides a rigorous mapping from
interacting electrons onto a system of non-interacting electrons. Unfortunately, the exact mapping is
utterly complicated, and this is where all the complexity goes. Luckily, there are simple approximations
that are both, intuitive and surprisingly accurate. Furthermore, with the help of clever algorithms,
density-functional calculations can be performed on current computers for large systems with several
hundred atoms in a unit cell or a molecule. The microscopic insight gained from density functional
calculations is a major source of progress in solid state physics, chemistry, material science, and
biology.

In the first part of this article, I will try to familiarize the novice reader with the basics of density-
functional theory, provide some guidance into common approximations and give an idea of the type

119
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of problems that can be studied with density functional theory.
Beyond this article, I recommend the insightful review articles on density functional theory by Jones

and Gunnarsson [28], Baerends [29], von Barth [30], Perdew [31], Yang [32], and their collaborators.
Solving the one-particle Schrödinger equation, which results from density-functional theory, for

real materials is a considerable challenge. Several avenues have been developed to their solution. This
is the field of electronic structure methods, which will be discussed in the second part of this article.
This part is taken from earlier versions by Clemens Först, Johannes Kästner and myself [33, 34].

10.2 Basics of density-functional theory

The dynamics of the electron wave function is governed by the Schrödinger equation i~∂t |Ψ〉 = Ĥ|Ψ〉
with the N-particle Hamiltonian Ĥ.

Ĥ =

N∑

j=1

(−~2
2me

~∇2j + vext(~rj)
)

+
1

2

N∑

i 6=j

e2

4πǫ0|~ri − ~rj |
. (10.1)

With me we denote the electron mass, with ǫ0 the vacuum permittivity, e is the elementary charge and
~ is the Planck quantum divided by 2π. The Coulomb potentials of the nuclei have been combined
into an external potential vext(~r).

All N-electron wave functions Ψ(~x1, . . . , ~xN) obey the Pauli principle, that is they change their
sign, when two of its particle coordinates are exchanged.

We use a notation that combines the position vector ~r ∈ R3 of an electron with its discrete
spin coordinate σ ∈ {↑, ↓} into a single vector ~x := (~r , σ). Similarly, we use the notation of a
four-dimensional integral

∫
d4x :=

∑

σ

∫
d3r for the sum over spin indices and the integral over the

position. With the generalized symbol δ(~x − ~x ′) := δσ,σ′δ(~r − ~r ′) we denote the product of Kronecker
delta of the spin coordinates and Dirac’s delta function for the positions. While, at first sight, it
seems awkward to combine continuous and discrete numbers, this notation is less error prone than
the notation that treats the spin coordinates as indices, where they can be confused with quantum
numbers. During the first reading, the novice can ignore the complexity of the spin coordinates,
treating ~x like a coordinate. During careful study, he will nevertheless have the complete and concise
expressions.

One-particle reduced density matrix and two-particle density

In order to obtain the ground state energy E = 〈Ψ|Ĥ|Ψ〉 we need to perform 2N integrations in 3N
dimensions each, i.e.

E =

∫

d4x1 · · ·
∫

d4xN Ψ
∗(~x1, . . . , ~xN)ĤΨ(~x1, . . . , ~xN) . (10.2)

However, only two different types of integrals occur in the expression for the energy, so that most
of these integrations can be performed beforehand leading to two quantities of physical significance.

• One of these quantities is the one-particle reduced density matrix ρ(1)(~x, ~x ′), which allows one
to evaluate all expectation values of one-particle operators such as the kinetic energy and the
external potential,

ρ(1)(~x, ~x ′) := N

∫

d4x2 . . .

∫

d4xN Ψ(~x, ~x2, . . . , ~xN)Ψ
∗(~x ′, ~x2, . . . , ~xN) . (10.3)

• The other one is the two-particle density n(2)(~r , ~r ′), which allows to determine the interaction
between the electrons,

n(2)(~r , ~r ′) := N(N − 1)
∑

σ,σ′

∫

d4x3 . . .

∫

d4xN |Ψ(~x, ~x ′, ~x3, . . . , ~xN)|2 . (10.4)
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If it is confusing that there are two different quantities depending on two particle coordinates, note
that the one-particle reduced density matrix ρ(1) depends on two ~x-arguments of the same particle,
while the two-particle density n(2) depends on the positions of two different particles.

With these quantities the total energy is

E =

∫

d4x ′
∫

d4x δ(~x ′ − ~x)
(−~2
2me

~∇2 + vext(~r)
)

ρ(1)(~x, ~x ′)

+
1

2

∫

d3r

∫

d3r ′
e2n(2)(~r , ~r ′)

4πǫ0|~r − ~r ′|
, (10.5)

where the gradient of the kinetic energy operates on the first argument ~r of the density matrix.

One-particle reduced density matrix and natural orbitals

In order to make oneself familiar with the one-particle reduced density matrix, it is convenient to
diagonalize it. The eigenstates ϕn(~r ) are called natural orbitals [35] and the eigenvalues f̄n are their
occupations. The index n labeling the natural orbitals may stand for a set of quantum numbers.

The density matrix can be written in the form

ρ(1)(~x, ~x ′) =
∑

n

f̄nϕn(~x)ϕ
∗
n(~x

′) . (10.6)

The natural orbitals are orthonormal one-particle orbitals, i.e.
∫

d4x ϕ∗m(~x)ϕn(~x) = δm,n . (10.7)

Due to the Pauli principle, occupations are non-negative and never larger than one [36]. The
natural orbitals already point the way to the world of effectively non-interacting electrons.

The one-particle density matrix provides us with the electron density

n(1)(~r) =
∑

σ

ρ(1)(~x, ~x) =
∑

σ

∑

n

f̄nϕ
∗
n(~x)ϕn(~x) . (10.8)

With the natural orbitals, the total energy Eq. 10.5 obtains the form

E =
∑

n

f̄n

∫

d4x ϕ∗n(~x)
−~2
2m

~∇2ϕn(~x) +
∫

d3r vext(~r)n
(1)(~r)

+
1

2

∫

d3r

∫

d3r ′
e2n(2)(~r , ~r ′)

4πǫ0|~r − ~r ′|
. (10.9)

Two-particle density and exchange-correlation hole

The physical meaning of the two-particle density n(2)(~r , ~r ′) is the following: For particles that are
completely uncorrelated, meaning that they do not even experience the Pauli principle, the two
particle density would be1 the product of one-particle densities, i.e. n(2)(~r , ~r ′) = n(1)(~r )n(1)(~r ′). If
one particle is at position ~r0, the density of the remaining N − 1 particles is the conditional density

n(2)(~r0,~r)

n(1)(~r0)
. (10.10)

The conditional density is the electron density as function of ~r seen by one of the electrons at ~r0.
This observer electron obviously only sees the remaining N − 1 electrons.

1This is correct only up to a term that vanishes in the limit of infinite particle number.
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n(r1)h(r1,r2)

|r2−r1|0

n2
n(2)(r2,r1)

n(2)(r2,r1)

0

Fig. 10.1: Two-particle density of the non-interacting electron gas for like-spin and opposite spin.
Also shown is the relation to the exchange hole h(~r1,~r2)

It is convenient to express the two-particle density by the hole function h(~r0,~r), i.e.

n(2)(~r0,~r) = n
(1)(~r0)

[

n(1)(~r) + h(~r0,~r )

]

. (10.11)

This equation defines the hole function as

h(~r0,~r) =
n(2)(~r0,~r )

n(1)(~r0)
− n(1)(~r) . (10.12)

One electron at position ~r0 does not “see” the total electron density n(1)(~r) with N electrons, but
only the density of the N−1 other electrons, because it does not see itself. The hole function h(~r0,~r)
is simply the difference of the total electron density and the electron density seen by the observer
electron at ~r0.

The division of the two-particle density in Eq. 10.11 suggests that we split the electron-electron
interaction into the so-called Hartree energy

EH
def
=
1

2

∫

d3r

∫

d3r ′
e2n(1)(~r)n(1)(~r ′)

4πǫ0|~r − ~r ′|
(10.13)

and the potential energy of exchange and correlation

Uxc
def
=

∫

d3r n(1)(~r)
1

2

∫

d3r ′
e2 h(~r , ~r ′)

4πǫ0|~r − ~r ′|
. (10.14)

Keep in mind that Uxc is not the exchange correlation energy. The difference between Uxc and the
exchange-correlation energy Exc is a kinetic energy correction that will be discussed later in Eq. 10.21.

The hole function has a physical meaning: An electron sees the total density minus the electrons
accounted for by the hole. Thus, each electron not only experiences the electrostatic potential of
the total electron density n(1)(~r), but also the attractive potential of its own exchange correlation
hole h(~r0,~r).

A few facts for this hole density are apparent:

1. Because each electron of a N-electron system sees N − 1 other electrons, the hole function
integrates to exactly minus one electron

∫

d3r h(~r0,~r ) = −1 (10.15)

irrespective of the position ~r0 of the observing electron.
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Fig. 10.2: Exchange hole in silicon from [37]. The cross indicates the position of the observer
electron. The black spheres and the lines indicate the atomic positions and bonds in the (110) plane.

2. The density of the remaining N − 1 electrons can not be larger than the total electron density.
This implies

h(~r0,~r) ≥ −n(1)(~r) . (10.16)

3. Due to the Pauli principle, no other electron with the same spin as the observer electron can
be at the position ~r0. Thus the on-top hole h(~r0,~r0) obeys the limits [38]

−1
2
n(1)(~r0) ≥ h(~r0,~r0) ≥ −n(1)(~r0) . (10.17)

4. Assuming locality, the hole function vanishes at large distances from the observer electron at
~r0, i.e.

h(~r0,~r)→ 0 for |~r − ~r0| → ∞ . (10.18)

With locality I mean that the density does not depend on the position or the presence of an
observer electron, if the latter is very far away.

A selfmade functional

It is fairly simple to make our own density functional2: For a given density, we choose a simple shape
for the hole function, such as a spherical box. Then we scale the value and the radius such that the
hole function integrates to −1, and that its value is opposite equal to the spin density at its center.
The electrostatic potential of this hole density at its center is the exchange-correlation energy for
the observer electron. Our model has an exchange correlation energy3 of

Uxc [n
(1)] ≈ −1

2

∫

d3r n(1)(~r )

(
3

4

e2

4πǫ0

3

√

2π

3

(

n(1)(~r)

) 1
3
)

∼
∫

d3r

(

n(1)(~r)

) 4
3

. (10.19)

The derivation is an elementary exercise and is given in the appendix. The resulting energy per
electron ǫxc is given on the right-hand side of Fig. 10.3 indicated as “model” and compared with the

2A functional F [y ] maps a function y(x) to a number F . It is a generalization of the function F (~y) of a vector ~y ,
where the vector index of ~y is turned into a continuous argument x.

3For this model we do not distinguish between the energy of exchange and correlation and its potential energy
contribution
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Fig. 10.3: Left: Scheme to demonstrate the construction of the exchange correlation energy from
a simple model. Right: exchange correlation energy per electron ǫxc as function of electron density
from our model, Hartree-Fock approximation and the exact result. The symbol “Na” indicates the
density of Sodium.

exact result indicated as “LSD” 4 and the Hartree-Fock result indicated as “HF” for a homogeneous
electron gas.

The agreement with the correct result, which is surprisingly good for such a crude model, provides
an idea of how robust the density-functional theory is with respect to approximations. While this
model has been stripped to the bones, it demonstrates the way physical insight enters the construction
of density functionals. Modern density functionals are far more sophisticated and exploit much more
information [39], but the basic method of construction is similar.

Kinetic energy

While the expression for the kinetic energy in Eq. 10.9 seems familiar, there is a catch to it. In order
to know the natural orbitals and the occupations we need access to the many-particle wave function
or at least to its reduced density matrix.

A good approximation for the kinetic energy of the interacting electrons is the kinetic energy
functional Ts [n(1)] of the ground state of non-interacting electrons with the same density as the true
system. It is defined by

Ts [n
(1)] = min

{fn∈[0,1],|ψn 〉}

{
∑

n

fn

∫

d4x ψ∗n(~x)
−~2 ~∇2
2m

ψn(~x)

+

∫

d3r vef f (~r )

([
∑

n

fn
∑

σ

ψ∗n(~x)ψn(~x)

]

− n(1)(~r)
)

−
∑

n,m

Λm,n

(

〈ψn|ψm〉 − δn,m
)}

. (10.20)

Note that fn 6= f̄n and that the so-called Kohn-Sham orbitals ψn(~x) differ5 from the natural orbitals
ϕn(~x). Natural orbitals and Kohn-Sham wave functions are fairly similar, while the occupations fn of
Kohn-Sham orbitals differ considerably from those f̄m of the natural orbitals. The effective potential
vef f (~r ) is the Lagrange multiplier for the density constraint. Λm,n is the Lagrange multiplier for the
orthonormality. Diagonalization of ΛΛΛ yields a diagonal matrix with the one-particle energies on the
diagonal.

4LSD stands for “local spin-density” and denotes the local spin-denisity approximation (LSDA). Modern implemen-
tations do not only use the total density as fundamental variable, but also the spin density.

5To be precise, Kohn-Sham orbitals are the natural orbitals for non-interacting electrons of a given density. They
are however different from the natural orbitals of interacting electrons at the same density.
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This kinetic energy Ts [n(1)] is a unique functional of the density, which is the first sign that we
are approaching a density-functional theory. Also it is the introduction of this kinetic energy, where
we made for the first time a reference to a ground state. Density functional theory as described here
is inherently a ground-state theory.

h  (r

r0 

r

0,r)h  (r

h  (r0,r)

−1

0

0

−1

r

h  (r

Fig. 10.4: Illustration of the correlation hole. The exchange hole, present without interaction, is
deformed by the Coulomb reaction. Because this deformation must respect the charge sum rule, this
defomation makes the hole more compact. The dominant effect is on the opposite-spin direction,
because the like-spin electrons are already at a distance by the exchange hole.

Why does the true kinetic energy of the interacting system differ from that of the non-interacting
energy? Consider the hole function of a non-interacting electron gas. When inserted into Eq. 10.14
for Uxc the potential energy of exchange and correlation, we obtain a contribution to the total energy
that is called exchange energy. The interaction leads to a second energy contribution that is called
correlation energy. Namely, when the interaction is switched on, the wave function is deformed
in such a way that the Coulomb repulsion between the electrons is reduced. This makes the hole
function more compact. However, there is a price to pay when the wave functions adjust to reduce the
Coulomb repulsion between the electrons, namely an increase of the kinetic energy: Pushing electrons
away from the neighborhood of the reference electrons requires work to be performed against the
kinetic pressure of the electron gas, which raises the kinetic energy. Thus, the system has to find a
compromise between minimizing the electrostatic repulsion of the electrons and increasing its kinetic
energy. As a result, the correlation energy has a potential-energy contribution and a kinetic-energy
contribution.

This tradeoff can be observed in Fig. 10.3. The correct exchange correlation energy is close to
our model at low densities, while it becomes closer to the Hartree-Fock result at high densities. This
is consistent with the fact that the electron gas can easily be deformed at low densities, while the
deformation becomes increasingly costly at high densities due to the larger pressure of the electron
gas.

The difference between Ts and the true kinetic energy is combined with the potential energy of
exchange and correlation Uxc from Eq. 10.14 into the exchange correlation energy Exc , i.e.

Exc = Uxc +
∑

n

f̄n

∫

d4x ϕ∗n(~x)
−~2
2m

~∇2ϕn(~x)− Ts [n(1)] . (10.21)

Note, that the φn(~x) and the f̄n are natural orbitals and occupations of the interacting electron gas,
and that they differ from the Kohn-Sham orbitals ψn(~x) and occupations fn.
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Total energy

The total energy obtains the form

E = min
|Φ〉,{|ψn〉,fn∈[0,1]}

{
∑

n

fn

∫

d4x ψ∗n(~x)
−~2
2m

~∇2ψn(~x)

+

∫

d3r vef f (~r)

([
∑

n

fn
∑

σ

ψ∗n(~x)ψn(~x)

]

− n(1)(~r)
)

+

∫

d3r vext(~r)n
(1)(~r)

+
1

2

∫

d3r

∫

d3r ′
e2n(1)(~r )n(1)(~r ′)

4πǫ0|~r − ~r ′|
+ Exc −

∑

n,m

Λm,n

(

〈ψn|ψm〉 − δn,m
)}

. (10.22)

This equation shall be read as follows: For a given many-particle wave function |Φ〉 we extract the
density n(1)(~r ) and the corresponding Kohn-Sham orbitals |ψn(~x) and occupations fn. Kohn-Sham
orbitals |ψn〉 and occupations fn are obtained by an independent minimization of the kinetic energy
for the density n(1)(~r ). Only Exc needs yet to be calculated directly from the many-particle wave
function. This is done for all many-particle wave functions until the minimum of the total energy has
been found.

Because we still need the full many particle wave function to determine the expression above,
Eq. 10.22 is not yet a functional of the density.

If, however, we were able to express the exchange-correlation energy Exc as a functional of the
density alone, there would be no need for the many-particle wave function at all and the terrors of
the exponential wall would be banned. We could minimize Eq. 10.22 with respect to the density,
Kohn-Sham orbitals and their occupations.

Let us, for the time being, simply assume that Exc [n(1)] is a functional of the electron density
and explore the consequences of this assumption. Later, I will show that this assumption is actually
valid.

The minimization in Eq. 10.22 with respect to the one-particle wave functions yields the Kohn-
Sham equations

[−~2
2me

~∇2 + vef f (~r)− ǫn
]

ψn(~x) = 0 with
∫

d4x ψm(~x)ψn(~x) = δm,n . (10.23)

The Kohn-Sham energies ǫn are the diagonal elements of the Lagrange multiplier Λ, when the latter
is forced to be diagonal.

The requirement that the derivative of the total energy Eq. 10.22 with respect to the density
vanishes, yields an expression for the effective potential

vef f (~r) = vext(~r) +

∫

d3r ′
e2n(1)(~r ′)

4πǫ0|~r − ~r ′|
+
δExc [n

(1)]

δn(1)(~r )
. (10.24)

Both equations, together with the density constraint

n(1)(~r ) =
∑

n

fn
∑

σ

ψ∗n(~x)ψn(~x) , (10.25)

form a set of coupled equations, that determine the electron density and the total energy. This set
of coupled equations, Eqs. 10.23, 10.24, and 10.25, is what is solved in the so-called self-consistency
loop. Once the set of self-consistent equations has been solved, we obtain the electron density and
we can evaluate the total energy.

In practice, one often makes the assumption that the non-interacting electrons in the effective
potential closely resemble the true interacting electrons, and extracts a wealth of other physical
properties from the Kohn-Sham wave functions |ψn〉 and the Kohn-Sham energies ǫn. However,
there is little theoretical backing for this approach and, if it fails, one should not blame density
functional theory!
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Fig. 10.5: Self-consistency cycle.

Is there a density functional?

The argument leading to the self-consistent equations, Eqs. 10.23, 10.24, and 10.25, relied entirely
on the hope that exchange correlation functional can be expressed as a functional of the electron
density. In fact, this can easily be shown, if we restrict us to ground state densities. The proof goes
back to the seminal paper by Levy [40, 41].

Imagine that one could construct all fermionic many-particle wave functions. For each of these
wave functions, we can determine in a unique way the electron density

n(1)(~r) = N
∑

σ

∫

d3x2 . . .

∫

d3xN |Ψ(~x, ~x2, . . . ~xN)|2 . (10.26)

Having the electron densities, we sort the wave functions according to their density. For each density,
I get a mug M[n(1)] that holds all wave functions with that density, that is written on the label of
the mug.

Now we turn to each mug M[n(1)] in sequence and determine for each the wave function with
the lowest energy. Because the external potential energy is the same for all wave functions with the
same density, we need to consider only the kinetic energy operator T̂ and the operator Ŵ of the
electron-electron interaction, and we do not need to consider the external potential.

F Ŵ [n(1)] = min
|Ψ〉∈M[n(1)]

〈Ψ|T̂ + Ŵ |Ψ〉 (10.27)

F Ŵ [n(1)] is the universal density functional. It is universal in the sense that it is an intrinsic property
of the electron gas and absolutely independent of the external potential.

Next, we repeat the same construction as that for a universal density functional, but now we leave
out the interaction Ŵ and consider only the kinetic energy T̂ .

F 0[n(1)] = min
|Ψ〉∈M[n(1)]

〈Ψ|T̂ |Ψ〉 (10.28)

The resulting functional F 0[n(1)] is nothing but the kinetic energy of non-interacting electrons Ts [n(1)].
Now we can write down the total energy as functional of the density

E[n(1)] = F Ŵ [n(1)] +

∫

d3r vext(~r )n
(1)(~r) (10.29)
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Fig. 10.6: Illustration for Levy’s proof that there exists a density functional.

When we compare Eq. 10.29 with Eq. 10.22, we obtain an expression for the exchange correlation
energy.

Exc [n
(1)] = F Ŵ [n(1)(~r)]− F 0[n(1)(~r)]− 1

2

∫

d3r

∫

d3r ′
e2n(1)(~r)n(1)(~r ′)

4πǫ0|~r − ~r ′|
(10.30)

This completes the proof that the exchange correlation energy is a functional of the electron density.
The latter was the assumption for the derivation of the set of self-consistent equations, Eqs. 10.23,
10.24, and 10.25 for the Kohn-Sham wave functions ψn(~x).

With this, I finish the description of the theoretical basis of density-functional theory. We have
seen that the total energy can rigorously be expressed as a functional of the density or, in practice,
as a functional of a set of one-particle wave functions, the Kohn-Sham wave functions and their
occupations. Density functional theory per se is not an approximation and, in contrast to common
belief, it is not a mean-field approximation. Nevertheless, we need to introduce approximations to
make density functional theory work. This is because the exchange correlation energy Exc [n(1)] is
not completely known. These approximations will be discussed in the next section.

10.3 Adiabatic connection

At this point I want to demonstrate a theorem that is central to the thinking within density functional
theory. It allows to express the difference between the kinetic energy of the interacting and the
non-interacting wave function by the exchange correlation hole for various strengths of the electron-
electron interaction.

Let us proceed as in Levy’s proof, but now we use a Hamiltonian with a scaled interaction

Ĥ(λ) = T̂ + λŴ

The extreme values, λ = 0 and λ = 1 describe the non-interacting and the interacting electron gas,
respectively.

For each value of λ we determine

F λŴ = min
|Ψ〉∈M[n(1)]

〈Ψ|T̂ + λŴ |Ψ〉 = 〈Ψ̄λ[n(1)]|T̂ + λŴ |Ψ̄λ[n(1)]〉
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Note, that the wave function |Ψ̄λ[n(1)]〉 of the minimum depends on λ.
The fully interacting functional can be obtained as an integral over the derivative

F Ŵ [n(1)] = F 0[n(1)] +

∫ 1

0

dλ
∂F λŴ [n(1)]

∂λ

Using the minimum condition the derivative of the functional with respect to λ can be expressed
entirely by the interaction energy.

In order to make the minimum condition explicit, we include the density and the normalization
constraint in the constrained search. Thus the functional is written as

F λŴ [n(1)] = min
|Ψ〉
〈Ψ|T̂ + λŴ |Ψ〉+

∫

d3r vef f ,λ(~r)

(

〈Ψ|n̂(~r)|Ψ〉 − n(1)(~r )
)

− E
(

〈Ψ|Ψ〉 − 1
)

The minimum condition is
[

T̂ + λŴ +

∫

d3r vef f ,λ(~r )n̂(~r)− Eλ
]

|Ψ̄λ〉 = 0

Now we can perform the derivative of

F λŴ [n(1)] = 〈Ψ̄λ|T̂ + λŴ |Ψ̄λ〉+
∫

d3r vef f ,λ(~r)

(

〈Ψ̄λ|n̂(~r)|Ψ̄λ〉 − n(1)(~r )
)

− Eλ
(

〈Ψ̄λ|Ψ̄λ〉 − 1
)

as

d

dλ
F λŴ [n(1)] = 〈dΨ̄λ

dλ
|
(

T̂ + λŴ +

∫

d3r vef f ,λ(~r)n̂(~r)− Eλ
)

|Ψ̄λ〉
︸ ︷︷ ︸

=0

= 〈Ψ̄λ|T̂ + λŴ +
∫

d3r vef f ,λ(~r)n̂(~r)− Eλ
︸ ︷︷ ︸

=0

|dΨ̄λ
dλ
〉

= 〈Ψ̄λ|Ŵ |Ψ̄λ〉+
∫

d3r
dvef f ,λ
dλ

(~r )

(

〈Ψ̄λ|n̂(~r )|Ψ̄λ〉 − n(1)(~r)
)

︸ ︷︷ ︸

=0

−dEλ
dλ

(

〈Ψ̄λ|Ψ̄λ〉 − 1
)

︸ ︷︷ ︸

=0

= 〈Ψ̄λ|Ŵ |Ψ̄λ〉

Thus we can express the functional as

F Ŵ [n(1)] = Ts [n
(1)] +

∫ 1

0

dλ 〈Ψ̄λ|Ŵ |Ψ̄λ〉

= Ts [n
(1)] +

1

2

∫

d3r

∫

d3r ′
e2n(1)(~r)n(1)(~r ′)

4πǫ0|~r − ~r ′|
+

∫

d3rn(1)(~r)

∫

d3r ′
e2〈hλ(~r , ~r ′)〉
4πǫ0|~r − ~r ′|

where

hav (~r , ~r ′) =

∫ 1

0

dλ hλ(~r , ~r ′)
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10.4 Jacob’s ladder of density functionals

The development of density functionals is driven by mathematical analysis of the exact exchange
correlation hole [39, 31], physical insight and numerical benchmark calculations on real systems. The
functionals evolved in steps from one functional form to another, with several parameterizations at
each level. Perdew pictured this development by Jacob’s ladder leading up to heaven [42, 31]. In his
analogy the different rungs of the ladder represent the different levels of density functionals leading
to the unreachable, ultimately correct functional.

JACOB’S LADDER OF DENSITY FUNCTIONALS

The different stairs of Jacobs Ladder of density functionals are

1. LDA (local density approximation): the exchange correlation hole is taken from the free elec-
tron gas. These functionals exhibit strong overbinding. While the van-der Waals bond is not
considered in these functionals, the overbinding mimicked van-der-Waals bonding, albeit for the
wrong reason.

2. GGA (generalized gradient approximation): These functionals not only use the electron density
but also its gradient to estimate the asymmetry of the exchange-correlation hole with respect
to the reference electrons. As a result surfaces are energetically favored compared to LDA and
the overbinding is strongly reduced.

3. meta-GGA: in addition to the gradient also the kinetic energy density is used as a paramter.
The kinetic energy is a measure for the flexibility of the electron gas.

4. Hybrid functionals: Hybrid functional include a fraction of exact exchange. This functionals
improve the description of left-right correlations.

5. Exact: An exact density functional can be obtained using the constrained search formalism
using many-particle techniques.

10.5 Xα method

Even before the invention of density functional theory per se, the so-called Xα method has been
introduced. Today, the Xα method has mostly historical value. The Xα method uses the expression
for the exchange of a homogeneous electron gas instead of the exchange-correlation energy. However,
the exchange energy has been scaled with a parameter, namely Xα, that has been adjusted to Hartree
Fock calculations. The results are shown in Fig. 10.7.

The rationale behind the Xα-method is a dimensional argument. Choose a given shape for the
exchange correlation hole, but scale it according to the density and the electron sum rule. Then
the exchange correlation energy per electron always scales like n

1
3 . Each shape corresponds to a

pre-factor.
Consider a given shape described by a function f (~r) with

f (~0) = 1
∫

d3r f (~r) = 1

Now, we express the hole function by the function f by scaling its magnitude at the origin such that
the amplitude of the hole cancels the electron density. Secondly, we stretch the function in space so
that the sum rule, which says that the hole must integrate to −1, is fulfilled. These conditions yield
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Fig. 10.7: Xα value obtained by comparison of the atomic energy with exact Hartree-Fock calculations
as function of atomic number of the atom.[?, 43]

the model for the exchange correlation hole.

h(~r0,~r) = −n(~r0)f (
~r − ~r0
n(~r0)

1
3

)

The corresponding exchange correlation energy per electron is

ǫxc(~r ) = −
1

2

∫

d3r ′
e2

4πǫ0|~r − ~r ′|
f (
~r − ~r ′
n(~r)

1
3

)

If we introduce a variable transform

~y =
~r − ~r ′
n(~r)

1
3

we obtain

ǫxc(~r) = −
n(~r)

1
3

2

∫

d3y ′
e2

4πǫ0|~y |
f (~y) = −Cn 13

where C is a constant that is entirely defined by the shape function f (~r).
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In general, the Xα method yields larger band gaps than density functional theory. The latter
severely underestimates band gaps. This is in accord with the tendency of Hartree Fock to overesti-
mate band gaps. In contrast to Hartree Fock, however, the Xα method is superior for the description
of metals because it does not lead to a vanishing density of states at the Fermi level.

LDA, the big surprise

The first density functionals used in practice were based on the local-density approximation (LDA).
The hole function for an electron at position ~r has been approximated by the one of a homogeneous
electron gas with the same density as n(1)(~r). The exchange correlation energy for the homogeneous
electron gas has been obtained by quantum Monte Carlo calculations [44] and analytic calculations
[45]. The local density approximation has been generalized early to local spin-density approximation
(LSD) [46].

Truly surprising was how well the theory worked for real systems. Atomic distances could be
determined within a few percent of the bond length and energy differences in solids were surprisingly
good.

This was unexpected, because the density in real materials is far from homogeneous. Gunnars-
son and Lundquist [47] explained this finding with sumrules that are obeyed by the local density
approximation: Firstly, the exchange correlation energy depends only on the spherical average of the
exchange correlation hole. Of the radial hole density only the first moment contributes, while the
second moment is fixed by the sum-rule that the electron density of the hole integrates to −1. Thus
we can use

∫

d3r
e2h(~r0,~r)

4πǫ0|~r − ~r0|
= − e2

4πǫ0

∫∞
0 dr r

〈
h(~r0, ~r ′)

〉

|~r ′−~r0|=r
∫∞
0 dr r 2

〈
h(~r0, ~r ′)

〉

|~r ′−~r0|=r
(10.31)

where the angular brackets imply the angular average of ~r ′−~r0. This dependence on the hole density
is rather insensitive to small changes of the hole density. Even for an atom, the spherically averaged
exchange hole closely resembles that of the homogeneous electron gas [28], as demonstrated in
Fig. 10.8.

0 0
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Fig. 10.8: Exchange hole of the nitrogen atom for an electron close to the nucleus (left) and further
from the nucleus (right). As seen in the top figures, the true hole is centered at the nucleus, and
the exchange hole of the free electron gas is centered on the electron. Despite the differences the
integrands for the exchange energy, i.e. the spherical average multiplied by 12 · 4πr 2 · e2

4πǫ0r
, shown at

the bottom, closely resembles each other. Redrawn from [28].
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The main deficiency of the LDA was the strong overbinding with bond energies in error by about
one electron volt. On the one hand, this rendered LDA useless for most applications in chemistry. On
the other hand, the problem was hardly visible in solid state physics where bonds are rarely broken,
but rearranged so that errors cancelled.

GGA, entering chemistry

Being concerned about the large density variations in real materials, one tried to include the first
terms of a Taylor expansion in the density gradients. These attempts failed miserably. The culprit
has been a violation of the basic sum rules as pointed out by Perdew [48]. The cure was a cutoff
for the gradient contributions at high gradients, which lead to the class of generalized gradient
approximations (GGA) [49].

rs| n|

∆

rsrs r0

n

−h(r0,r)

r

n

Fig. 10.9: Definition of the reduced gradient. The density gradient is made dimension-less by multi-
plication with the Seitz radius rs representing the average size of the exchabge correlation hole and
by division by the density. The Seitz radius is defined a by 4π3 r

2
s n = 1, where n is the electron density.

If the reduced gradient exceeds one the center of the exchange correlation hole moves away from the
electron to avoid negative two-particle densities.

Becke [50] provides an intuitive description for the workings of GGA’s, which I will sketch here in
a simplified manner: Becke uses an ansatz Exc =

∫
d3r A(n(~r))F (x(~r)) for the exchange-correlation

energy where n(~r) is the local density and x = |~∇n|/n 43 is a dimensionless reduced gradient. Do not
confuse this symbol with the combined position-and-spin coordinate ~x . The function A is simply the
LDA expression and F (x) is the so-called enhancement factor. The large-gradient limit of F (x) is
obtained from a simple physical argument:

Somewhat surprisingly, the reduced gradient is largest not near the nucleus but in the exponentially
decaying charge-density tails as shown in Fig. 10.10. For an electron that is far from an atom, the hole
is on the atom, because a hole can only be dug where electrons are. Thus the Coulomb interaction
energy of the electron with its hole is − e2

4πǫ0r
, where r is the distance of the reference electron from

the atom. As shown in appendix 10.7.2, the enhancement factor can now be obtained by enforcing
this behavior for exponentially decaying densities.

As a result, the exchange and correlation energy per electron in the tail region of the electron
density falls of with the inverse distance in GGA, while it has a much faster, exponential decay in
the LDA. Thus, the tail region is stabilized by GGA. This contribution acts like a negative “surface
energy”.

When a bond between two atoms is broken, the surface is increased. In GGA this bond-breaking
process is more favorable than in LDA, and, hence, the bond is weakened. Thus the GGA cures the
overbinding error of the LDA.

These gradient corrections greatly improved the bond energies and made density functional theory
useful also for chemists. The most widely distributed GGA functional is the Perdew-Burke-Ernzerhof
(PBE) functional [51].
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Fig. 10.10: Left figure: reduced density gradient x = |~∇n|/n 43 of a silicon atom as function of
distance from the nucleus demonstrating that the largest reduced gradients occur in the exponential
tails. Right figure: additional contribution from the gradient correction (PBE versus PW91 LDA) of
the exchange correlation energy per electron. The figure demonstrates that the gradient correction
stabilizes the tails of the wave function. The covalent radius of silicon is at 1.11 Å.

Meta GGA’s

The next level of density functionals are the so-called meta GGA’s [52, 53, 54] that include not only
the gradient of the density, but also the second derivatives of the density. These functionals can
be reformulated so that the additional parameter is the kinetic-energy density instead of the second
density derivatives. Perdew recommends his TPSS functional [55].

Hybrid functionals

Another generation of functionals are hybrid functionals [56, 57], which replace some of the exchange
energy by the exact exchange

EHFX = −1
2

∑

m,n

f̄m f̄n

∫

d4x

∫

d4x ′
e2ψ∗m(~x)ψn(~x)ψ

∗
n(~x

′)ψm(~x ′)

4πǫ0|~r − ~r ′|
(10.32)

where f̄n and the ψn(~x) are the Kohn-Sham occupations and wave functions, respectively.

d3r
4 0|r−r’|πε
e2h  (r,r’)λ

2
1

Hartree−Fock
(hole of non−interacting electrons)

xcε

0 1 λ

Fig. 10.11: Demonstration of the guiding idea of behind hybrid functionals, namely adiabatic con-
nection. The exchange correlation energy can be written as an integral of the potential energy of
exchange of interaction over the integration strength. This integrand may be approximated by an
weighted average of the
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The motivation for this approach goes back to the adiabatic connection formula [58, 59, 47]

Exc [n(~r )] =

∫ 1

0

dλ UλŴxc [n(~r)] =

∫

d3r n(~r)

∫ 1

0

dλ
1

2

∫

d3r ′
hλ(~r , ~r ′)

4πǫ|~r − ~r ′|
(10.33)

which expresses the exchange correlation energy as an integral of the potential energy of exchange
and correlation over the interaction strength λ. Here the interaction in the Hamiltonian is scaled by
a factor λ, leading to a λ-dependent universal functional F λŴ [n(1)]. The interaction energy can be
expressed by

F Ŵ [n] = F 0[n] +

∫ 1

0

dλ
d

dλ
F λŴ [n]

= Ts [n] +
1

2

∫

d3r

∫

d3r ′
e2n(~r)n(~r ′)

4πǫ0|~r − ~r ′|
+

∫ 1

0

dλ UλŴxc [n] (10.34)

which leads via Eq. 10.30 to Eq. 10.33. Using perturbation theory, the derivative of F λŴ [n] simplifies
to the expectation value 〈Ψ(λ)|Ŵ |Ψ(λ)〉 of the interaction, which is the potential energy of exchange
and correlation evaluated for a many-particle wave function obtained for the specified given interaction
strength.

The underlying idea of the hybrid functionals is to interpolate the integrand between the end
points. In the non-interacting limit, i.e. for λ = 0 the integrand UλŴxc is exactly given by the
exact exchange energy of Eq. 10.32. For the full interaction, on the other hand, the LDA or GGA
functionals are considered correctly. Thus a linear interpolation would yield

Exc =
1

2

(

U0xc + U
Ŵ
xc

)

=
1

2

(

EHFX + UŴxc

)

= EGGAxc +
1

2

(

EHFX − EGGAX

)

. (10.35)

Depending on whether the λ-dependence is a straight line or whether it is convex, the weight factor
may be equal or smaller than 1

2 . Perdew [60] has given arguments that a factor 14 would actually be
better than a factor 12 .

Hybrid functionals perform substantially better than GGA functionals regarding binding energies,
band gaps and reaction energies. However, they are flawed for the description of solids. The reason
is that the exact exchange hole in a solid is very extended. These long-range tails are screened away
quickly when the interaction is turned on, because they are cancelled by the correlation. Effectively,
we should use a smaller mixing factor for the long range part of the exchange hole. This can be
taken into account, by cutting off the long-range part of the interaction for the calculation of the
Hartree-Fock exchange [61]. This approach improves the results for band gaps while reducing the
computational effort [62].

The effective cancellation of the long-ranged contribution of exchange with a similar contribution
from correlation, which is also considered properly already in the LDA, is one of the explanation for
the superiority of the LDA over the Hartree-Fock approximation.

The most widely used hybrid functional is the B3LYP functional [63], which is, however, obtained
from a parameter fit to a database of simple molecules. The functional PBE0 [64, 65] is born out
of the famous PBE GGA functional and is a widely distributed parameter-free functional.

LDA+U and local hybrid functionals

Starting from a completely different context, Anisimov et. al. [66] introduced the so-called LDA+U
method, which, as described below, has some similarities to the hybrid functionals above.

The main goal was to arrive at a proper description of transition metal oxides, which tend to be
Mott insulators, while GGA calculations predict them often to be metals. The remedy was to add a
correlation term6 [67] borrowed from the Hubbard model and to correct the resulting double counting

6The expression given here looks unusually simple. This is due to the notation of spin orbitals, which takes care of
the spin indices.
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of the interactions by Edc .

E = EGGA +
1

2

∑

R

∑

α,β,γ,δ∈CR
Uα,β,γ,δ

(

ργ,αρδ,β − ρδ,αργ,β
)

− Edc (10.36)

Uα,β,γ,δ =

∫

d4x

∫

d4x ′
e2χ∗α(~x)χ

∗
β(
~x ′)χγ(~x)χδ(~x ′)

4πǫ0|~r − ~r ′|
(10.37)

ρα,β = 〈πα|ψn〉fn〈ψn|πβ〉 , (10.38)

where |χα〉 are atomic tight-binding orbitals and |πα〉 are their projector functions.7 The additional
energy is a Hartree-Fock exchange energy, that only considers the exchange for specified sets of local
orbitals. The exchange term does only consider a subset of orbitals CR for each atom R and it ignores
the contribution involving orbitals centered on different atoms.

Novak et al. [68] made the connection to the hybrid functionals explicit and restricted the exact
exchange contribution of a hybrid functional to only a shell of orbitals. While in the LDA+U method
the bare Coulomb matrix elements are reduced by a screening factor, in the hybrid functionals it is
the mixing factor that effectively plays the same role. Both LDA+U and the local hybrid method have
in common that they radically remove the contribution of off-site matrix elements of the interaction.
Tran et al. [69] applied this method to transition metal oxides and found results that are similar to
those of the full implementation of hybrid functionals.

Van der Waals interactions

One of the major difficulties for density functionals is the description of van der Waals forces, because
it is due to the quantum mechanical synchronization of charge fluctuations on distinct molecules. I
refer the reader to the work made in the group of Lundqvist [70, 71, 72].

10.6 Benchmarks, successes and failures

The development of density functionals has profited enormously from careful benchmark studies.
The precondition is a data set of test cases for which reliable and accurate experimental data exist.
The most famous data sets are the G1 and G2 databases [73, 74, 75, 76] that have been set up
to benchmark quantum-chemistry codes. Becke [77, 78, 57, 79, 80] set a trend by using these
large sets of test cases for systematic studies of density functionals. In order to separate out the
accuracy of the density functionals, it is vital to perform these calculations on extremely accurate
numerical methods. Becke used basis-set free calculations that were limited to small molecules while
being extremely accurate. Paier et al. [81, 82, 83, 62] have later performed careful comparisons of
two methods, Gaussian and the projector augmented-wave method, to single out the error of the
electronic structure method.

Overall, the available density functionals predict molecular structures very well. Bond distances
agree with the experiment often within one percent. Bond angles come out within a few degrees.

The quality of total energies depends strongly on the level of functionals used. On the LDA level
bonds are overestimated in the 1 eV range, on the GGA level these errors are reduced to a about
0.3 eV, and hybrid functionals reduce the error by another factor of 2. The ultimate goal is to reach
chemical accuracy, which is about 0.05 eV. Such an accuracy allows to predict reaction rates at room
temperature within a factor of 10.

Band gaps are predicted to be too small with LDA and GGA. The so-called band gap problem has
been one of the major issues during the development of density functionals. Hybrid functionals clearly

7Projector functions obey the biorthogonality condition 〈χα|πβ〉 = δα,β . Within the sub-Hilbert space of the tight-
binding orbitals, i.e. for wave functions of the form |ψ〉 =

∑

α |χα〉cα, the projector functions decompose the wave
function into tight binding orbitals, i.e. |ψ〉 =

∑

α |χα〉〈πα|ψ〉. A similar projection is used extensively in the projector
augmented-wave method described later.



10 DENSITY FUNCTIONAL THEORY 137

improve the situation. A problem is the description of materials with strong electron correlations. For
LDA and GGA many insulating transition metal oxides are described as metals. This changes again
for the hybrid functionals, which turns them into antiferromagnetic insulators, which is a dramatic
improvement.

10.7 Appendix to chapter DFT

10.7.1 Model exchange-correlation energy

We consider a model with a constant density and a hole function that describes a situation, where all
electrons of the same spin are repelled completely from a sphere centered at the reference electron

The hole function has the form

h(~r ,~r0) =

{

− 12n(~r0) for |~r − ~r0| < rh

0 otherwise

where n(~r) is the electron density and the hole radius rh = 3

√
2
4πn is the radius of the sphere, which

is determined such that the exchange correlation hole integrates to −1, i.e. 4π3 r
3
h

(
1
2n
)
= 1.

The potential of a homogeneously charged sphere with radius rh and one positive charge is

v(r ) =
e2

4πǫ0







− 3
2rh
+ 1
2rh

(
r
rh

)2

for r ≤ rh
− 1r for r > rh

where r = |~r − ~r0|.
With Eq. 10.14 we obtain for the potential contribution of the exchange correlation energy

Uxc = −
∫

d3r n(~r)v(r = 0) = −
∫

d3r
e2

4πǫ0

3

4
3

√

2π

3
· n 43

10.7.2 Large-gradient limit of the enhancement factor

An exponentially decaying density

n(r ) = exp(−λr ) (10.39)

has a reduced gradient

x :=
|~∇n|
n
4
3

= λ exp(+
1

3
λr ) (10.40)

We make the following ansatz for the exchange correlation energy per electron

ǫxc (n, x) = −Cn
1
3 F (x) (10.41)

where only the local exchange has been used and C is a constant.
Enforcing the long-distance limit of the exchange correlation energy per electron for exponentially

decaying densities

ǫxc((n(r ), x(r )) = −
1

2

e2

4πǫ0r
(10.42)

yields

F (x) =
e2

4πǫ0r (x)2Cn
1
3 (r (x))

(10.43)
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Using Eqs. 10.39 and 10.40, we express the radius and the density by the reduced gradient, i.e.

r (x) = − 3
λ

(

ln[λ]− ln[x ]
)

(10.44)

n(x) = n(r (x)) = λ3x−3 , (10.45)

and obtain

F (x) =
e2

4πǫ0

[

− 3λ
(

ln[λ]− ln[x ]
)][

2Cλx−1
] =

( e2

4πǫ0 · 6C
) x2

x ln(λ)− x ln(x)

x→∞→ −
(

e2

4πǫ0 · 6C

)
x2

x ln(x)
(10.46)

Now we need to ensure that F (0) = 1, so that the gradient correction vanishes for the homogeneous
electron gas, and that F (x) = F (−x) to enforce spin reversal symmetry. There are several possible
interpolations for these requirements, but the simplest is

F (x) = 1− βx2

1 + 4πǫ0e2 · 6Cβx · asinh(x)
(10.47)

This is the enhancement factor for exchange used by Becke in his B88 functional [50].



Chapter 11

Electronic structure methods and the
PAW method

This section is related to earlier versions [33, 34] written together with J. Kästner and C. Först.

11.1 Introduction

The main goal of electronic structure methods is to solve the Schrödinger equation for the electrons
in a molecule or solid, to evaluate the resulting total energies, forces, response functions and other
quantities of interest. In this chapter we describe the basic ideas behind the main electronic structure
methods such as the pseudopotential and the augmented wave methods and provide selected pointers
to contributions that are relevant for a beginner. We give particular emphasis to the Projector
Augmented Wave (PAW) method developed by one of us, an electronic structure method for ab-
initio molecular dynamics with full wavefunctions. We feel that it allows best to show the common
conceptional basis of the most widespread electronic structure methods in materials science.

The methods described below require as input only the charge and mass of the nuclei, the number
of electrons and an initial atomic geometry. They predict binding energies accurate within a few
tenths of an electron volt and bond-lengths in the 1-2 percent range. Currently, systems with few
hundred atoms per unit cell can be handled. The dynamics of atoms can be studied up to tens
of pico-seconds. Quantities related to energetics, the atomic structure and to the ground-state
electronic structure can be extracted.

In order to lay a common ground and to define some of the symbols, let us briefly touch upon the
density functional theory [26, 27]. It maps a description for interacting electrons, a nearly intractable
problem, onto one of non-interacting electrons in an effective potential. Within density functional
theory, the total energy is written as

E
[

{ψn(~r )}, {~RR}
]

=
∑

n

fn〈ψn|
~̂p 2

2me
|ψn〉

+
1

2

∫

d3r

∫

d3r ′
e2
(

n(~r) + Z(~r )
) (
n(~r ′) + Z(~r ′)

)

4πǫ0|~r − ~r ′|
+ Exc [n] , (11.1)

where Z(~r) = −
∑

R ZRδ(~r − ~RR) is the nuclear charge density expressed in electron charges. ZR is
the atomic number of a nucleus at position ~RR.

The electronic ground state is determined by minimizing the total energy functional E[Ψn] of
Eq. 11.1 at a fixed ionic geometry. The one-particle wave functions have to be orthogonal. This
constraint is implemented with the method of Lagrange multipliers. We obtain the ground-state
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wave functions from the extremum condition for

Y
[

{|ψn〉},ΛΛΛ
]

= E
[

{|ψn〉}
]

−
∑

n,m

[

〈ψn|ψm〉 − δn,m
]

Λm,n (11.2)

with respect to the wavefunctions and the Lagrange multipliers Λm,n. The extremum condition for
the wavefunctions has the form

Ĥ|ψn〉fn =
∑

m

|ψm〉Λm,n , (11.3)

where Ĥ = 1
2me

~̂p 2 + v̂eff is the effective one-particle Hamilton operator.
The corresponding effective potential depends itself on the electron density via

vef f (~r) =

∫

d3r ′
e2
(

n(~r ′) + Z(~r ′)
)

4πǫ0|~r − ~r ′|
+ µxc(~r) , (11.4)

where µxc(~r) =
δExc [n(~r)]
δn(~r) is the functional derivative of the exchange and correlation functional.

After a unitary transformation that diagonalizes the matrix of Lagrange multipliers ΛΛΛ, we obtain
the Kohn-Sham equations

Ĥ|ψn〉 = |ψn〉ǫn . (11.5)

The one-particle energies ǫn are the eigenvalues of the matrix with the elements Λn,m(fn+fm)/(2fnfm)
[84].

The one-electron Schrödinger equations, namely the Kohn-Sham equations given in Eq. 10.23,
still pose substantial numerical difficulties: (1) in the atomic region near the nucleus, the kinetic
energy of the electrons is large, resulting in rapid oscillations of the wavefunction that require fine
grids for an accurate numerical representation. On the other hand, the large kinetic energy makes
the Schrödinger equation stiff, so that a change of the chemical environment has little effect on the
shape of the wavefunction. Therefore, the wavefunction in the atomic region can be represented well
already by a small basis set. (2) In the bonding region between the atoms the situation is opposite.
The kinetic energy is small and the wavefunction is smooth. However, the wavefunction is flexible
and responds strongly to the environment. This requires large and nearly complete basis sets.

Combining these different requirements is non-trivial and various strategies have been developed.

• The atomic point of view has been most appealing to quantum chemists. Basis functions are
chosen that resemble atomic orbitals. This choice exploits that the wavefunction in the atomic
region can be described by a few basis functions, while the chemical bond is described by the
overlapping tails of these atomic orbitals. Most techniques in this class are a compromise of,
on the one hand, a well adapted basis set, where the basis functions are difficult to handle,
and, on the other hand, numerically convenient basis functions such as Gaussians, where the
inadequacies are compensated by larger basis sets.

• Pseudopotentials regard an atom as a perturbation of the free electron gas. The most natural
basis functions for the free electron gas are plane waves. Plane-wave basis sets are in principle
complete and suitable for sufficiently smooth wavefunctions. The disadvantage of the compa-
rably large basis sets required is offset by their extreme numerical simplicity. Finite plane-wave
expansions are, however, absolutely inadequate to describe the strong oscillations of the wave-
functions near the nucleus. In the pseudopotential approach the Pauli repulsion by the core
electrons is therefore described by an effective potential that expels the valence electrons from
the core region. The resulting wavefunctions are smooth and can be represented well by plane
waves. The price to pay is that all information on the charge density and wavefunctions near
the nucleus is lost.
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• Augmented-wave methods compose their basis functions from atom-like wavefunctions in the
atomic regions and a set of functions, called envelope functions, appropriate for the bonding in
between. Space is divided accordingly into atom-centered spheres, defining the atomic regions,
and an interstitial region in between. The partial solutions of the different regions are matched
with value and derivative at the interface between atomic and interstitial regions.

The projector augmented-wave method is an extension of augmented wave methods and the
pseudopotential approach, which combines their traditions into a unified electronic structure method.

After describing the underlying ideas of the various approaches, let us briefly review the history of
augmented wave methods and the pseudopotential approach. We do not discuss the atomic-orbital
based methods, because our focus is the PAW method and its ancestors.

11.2 Augmented wave methods

The augmented wave methods have been introduced in 1937 by Slater [85]. His method was called
augmented plane-wave (APW) method. Later Korringa [86], Kohn and Rostoker [87] modified the
idea, which lead to the so-called KKR method. The basic idea behind the augmented wave methods
has been to consider the electronic structure as a scattered-electron problem: Consider an electron
beam, represented by a plane wave, traveling through a solid. It undergoes multiple scattering at
the atoms. If, for some energy, the outgoing scattered waves interfere destructively, so that the
electrons can not escape, a bound state has been determined. This approach can be translated
into a basis-set method with energy- and potential-dependent basis functions. In order to make the
scattered wave problem tractable, a model potential had to be chosen: The so-called muffin-tin
potential approximates the true potential by a potential that is spherically symmetric in the atomic
regions, and constant in between.

Augmented-wave methods reached adulthood in the 1970s: O. K. Andersen [13] showed that
the energy dependent basis set of Slater’s APW method can be mapped onto one with energy
independent basis functions by linearizing the partial waves for the atomic regions with respect to
their energy. In the original APW approach, one had to determine the zeros of the determinant of an
energy dependent matrix, a nearly intractable numerical problem for complex systems. With the new
energy independent basis functions, however, the problem is reduced to the much simpler generalized
eigenvalue problem, which can be solved using efficient numerical techniques. Furthermore, the
introduction of well defined basis sets paved the way for full-potential calculations [88]. In that case,
the muffin-tin approximation is used solely to define the basis set |χi 〉, while the matrix elements
〈χi |H|χj 〉 of the Hamiltonian are evaluated with the full potential.

In the augmented wave methods one constructs the basis set for the atomic region by solving the
radial Schrödinger equation for the spherically averaged effective potential

[−~2
2me

~∇2 + vef f (~r)− ǫ
]

φℓ,m(ǫ,~r ) = 0 (11.6)

as function of the energy. Note that a partial wave φℓ,m(ǫ,~r ) is an angular-momentum eigenstate and
can be expressed as a product of a radial function and a spherical harmonic. The energy-dependent
partial wave is expanded in a Taylor expansion about some reference energy ǫν,ℓ

φℓ,m(ǫ,~r) = φν,ℓ,m(~r) + (ǫ− ǫν,ℓ)φ̇ν,ℓ,m(~r) +O((ǫ− ǫν,ℓ)2) , (11.7)

where φν,ℓ,m(~r) = φℓ,m(ǫν,ℓ,~r ). The energy derivative of the partial wave φ̇ν,ℓ,m(~r) =
∂φℓ,m(ǫ,~r)

∂ǫ

∣
∣
∣
ǫν,ℓ

is

obtained from the energy derivative of the Schrödinger equation

[−~2
2me

~∇2 + vef f (~r)− ǫν,ℓ
]

φ̇ν,ℓ,m(~r) = φν,ℓ,m(~r ) . (11.8)
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Next, one starts from a regular basis set, such as plane waves, Gaussians or Hankel functions.
These basis functions are called envelope functions |χ̃i 〉. Within the atomic region they are replaced by
the partial waves and their energy derivatives, such that the resulting wavefunction χi(~r) is continuous
and differentiable. The augmented envelope function has the form

χi(~r) = χ̃i(~r )−
∑

R

θR(~r)χ̃i(~r) +
∑

R,ℓ,m

θR(~r)
[
φν,R,ℓ,m(~r)aR,ℓ,m,i + φ̇ν,R,ℓ,m(~r)bR,ℓ,m,i

]
. (11.9)

θR(~r ) is a step function that is unity within the augmentation sphere centered at ~RR and zero else-
where. The augmentation sphere is atom-centered and has a radius about equal to the covalent
radius. This radius is called the muffin-tin radius, if the spheres of neighboring atoms touch. These
basis functions describe only the valence states; the core states are localized within the augmenta-
tion sphere and are obtained directly by a radial integration of the Schrödinger equation within the
augmentation sphere.

The coefficients aR,ℓ,m,i and bR,ℓ,m,i are obtained for each |χ̃i 〉 as follows: The envelope function
is decomposed around each atomic site into spherical harmonics multiplied by radial functions

χ̃i(~r) =
∑

ℓ,m

uR,ℓ,m,i(|~r − ~RR|)Yℓ,m(~r − ~RR) . (11.10)

Analytical expansions for plane waves, Hankel functions or Gaussians exist. The radial parts of the
partial waves φν,R,ℓ,m and φ̇ν,R,ℓ,m are matched with value and derivative to uR,ℓ,m,i(|~r |), which yields
the expansion coefficients aR,ℓ,m,i and bR,ℓ,m,i .

If the envelope functions are plane waves, the resulting method is called the linear augmented
plane-wave (LAPW) method. If the envelope functions are Hankel functions, the method is called
linear muffin-tin orbital (LMTO) method.

A good review of the LAPW method [13] has been given by Singh [89]. Let us now briefly
mention the major developments of the LAPW method: Soler [90] introduced the idea of additive
augmentation: While augmented plane waves are discontinuous at the surface of the augmentation
sphere if the expansion in spherical harmonics in Eq. 11.9 is truncated, Soler replaced the second
term in Eq. 11.9 by an expansion of the plane wave with the same angular momentum truncation as
in the third term. This dramatically improved the convergence of the angular momentum expansion.
Singh [91] introduced so-called local orbitals, which are non-zero only within a muffin-tin sphere,
where they are superpositions of φ and φ̇ functions from different expansion energies. Local orbitals
substantially increase the energy transferability. Sjöstedt [92] relaxed the condition that the basis
functions are differentiable at the sphere radius. In addition she introduced local orbitals, which are
confined inside the sphere, and that also have a kink at the sphere boundary. Due to the large energy
cost of kinks, they will cancel, once the total energy is minimized. The increased variational degree
of freedom in the basis leads to a dramatically improved plane-wave convergence [93].

The second variant of the linear methods is the LMTO method [13]. A good introduction into
the LMTO method is the book by Skriver [94]. The LMTO method uses Hankel functions as
envelope functions. The atomic spheres approximation (ASA) provides a particularly simple and
efficient approach to the electronic structure of very large systems. In the ASA the augmentation
spheres are blown up so that the sum of their volumes is equal to the total volume. Then, the
first two terms in Eq. 11.9 are ignored. The main deficiency of the LMTO-ASA method is the
limitation to structures that can be converted into a closed packed arrangement of atomic and
empty spheres. Furthermore, energy differences due to structural distortions are often qualitatively
incorrect. Full potential versions of the LMTO method, that avoid these deficiencies of the ASA
have been developed. The construction of tight binding orbitals as superposition of muffin-tin orbitals
[95] showed the underlying principles of the empirical tight-binding method and prepared the ground
for electronic structure methods that scale linearly instead of with the third power of the number
of atoms. The third generation LMTO [96] allows to construct true minimal basis sets, which
require only one orbital per electron pair for insulators. In addition, they can be made arbitrarily
accurate in the valence band region, so that a matrix diagonalization becomes unnecessary. The
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first steps towards a full-potential implementation, that promises a good accuracy, while maintaining
the simplicity of the LMTO-ASA method, are currently under way. Through the minimal basis-set
construction the LMTO method offers unrivaled tools for the analysis of the electronic structure
and has been extensively used in hybrid methods combining density functional theory with model
Hamiltonians for materials with strong electron correlations [97].

11.3 Pseudopotentials

Pseudopotentials have been introduced to (1) avoid describing the core electrons explicitly and (2)
to avoid the rapid oscillations of the wavefunction near the nucleus, which normally require either
complicated or large basis sets.

The pseudopotential approach can be traced back to 1940 when C. Herring invented the orthog-
onalized plane-wave method [98]. Later, Phillips [99] and Antončík [100] replaced the orthogonality
condition by an effective potential, which mimics the Pauli repulsion by the core electrons and thus
compensates the electrostatic attraction by the nucleus. In practice, the potential was modified, for
example, by cutting off the singular potential of the nucleus at a certain value. This was done with a
few parameters that have been adjusted to reproduce the measured electronic band structure of the
corresponding solid.

Hamann, Schlüter and Chiang [101] showed in 1979 how pseudopotentials can be constructed in
such a way that their scattering properties are identical to that of an atom to first order in energy.
These first-principles pseudopotentials relieved the calculations from the restrictions of empirical pa-
rameters. Highly accurate calculations have become possible especially for semiconductors and simple
metals. An alternative approach towards first-principles pseudopotentials by Zunger and Cohen[102]
even preceded the one mentioned above.

The idea behind the pseudopotential construction

In order to construct a first-principles pseudopotential, one starts out with an all-electron density-
functional calculation for a spherical atom. Such calculations can be performed efficiently on radial
grids. They yield the atomic potential and wavefunctions φℓ,m(~r ). Due to the spherical symmetry,
the radial parts of the wavefunctions for different magnetic quantum numbers m are identical.

For the valence wavefunctions one constructs pseudo wavefunctions |φ̃ℓ,m〉. There are numerous
ways [103, 104, 105, 106] to construct those pseudo wavefunctions: Pseudo wave functions are iden-
tical to the true wave functions outside the augmentation region, which is called core region in the con-
text of the pseudopotential approach. Inside the augmentation region the pseudo wavefunction should
be nodeless and have the same norm as the true wavefunctions, that is 〈φ̃ℓ,m|φ̃ℓ,m〉 = 〈φℓ,m|φℓ,m〉
(compare Figure 11.1).

From the pseudo wavefunction, a potential uℓ(~r) can be reconstructed by inverting the respective
Schrödinger equation, i.e.

[

− ~
2

2me
~∇2 + uℓ(~r)− ǫℓ,m

]

φ̃ℓ,m(~r ) = 0⇒ uℓ(~r) = ǫ+
1

φ̃ℓ,m(~r)
· ~

2

2me
~∇2φ̃ℓ,m(~r) .

This potential uℓ(~r) (compare Figure 11.1), which is also spherically symmetric, differs from one
main angular momentum ℓ to the other. Note, that this inversion of the Schrödinger equation works
only if the wave functions are nodeless.

Next we define an effective pseudo Hamiltonian

ˆ̃Hℓ = −
~2

2me
~∇2 + v psℓ (~r) +

∫

d3r ′
e2
(

ñ(~r ′) + Z̃(~r ′)
)

4πǫ0|~r − ~r ′|
+ µxc([n(~r )],~r ) , (11.11)

where µxc(~r) = δExc [n]/δn(~r ) is the functional derivative of the exchange and correlation energy
with respect to the electron density. Then, we determine the pseudopotentials v psℓ such that the
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Fig. 11.1: Illustration of the pseudopotential concept at the example of the 3s wavefunction of Si.
The solid line shows the radial part of the pseudo wavefunction φ̃ℓ,m. The dashed line corresponds
to the all-electron wavefunction φℓ,m, which exhibits strong oscillations at small radii. The angular
momentum dependent pseudopotential uℓ (dash-dotted line) deviates from the all-electron potential
vef f (dotted line) inside the augmentation region. The data are generated by the fhi98PP code [107].

pseudo Hamiltonian produces the pseudo wavefunctions, that is

v psℓ (~r) = uℓ(~r)−
∫

d3r ′
e2
(

ñ(~r ′) + Z̃(~r ′)
)

4πǫ0|~r − ~r ′|
− µxc([ñ(~r)],~r) . (11.12)

This process is called “unscreening”.
Z̃(~r) mimics the charge density of the nucleus and the core electrons. It is usually an atom-

centered, spherical Gaussian that is normalized to the charge of nucleus and core electrons of that
atom. In the pseudopotential approach, Z̃R(~r ) does not change with the potential. The pseudo
density ñ(~r) =

∑

n fnψ̃
∗
n(~r)ψ̃n(~r) is constructed from the pseudo wavefunctions.

In this way, we obtain a different potential for each angular momentum channel. In order to apply
these potentials to a given wavefunction, the wavefunction must first be decomposed into angular
momenta. Then each component is applied to the pseudopotential v psℓ for the corresponding angular
momentum.

The pseudopotential defined in this way can be expressed in a semi-local form1

v ps(~r ,~r ′) = v̄(~r)δ(~r − ~r ′) +
∑

ℓ,m

[

Yℓ,m(~r)
[
v psℓ (~r)− v̄(~r)

] δ(|~r | − |~r ′|)
|~r |2 Y ∗ℓ,m(~r

′)

]

. (11.13)

The local potential v̄(~r) only acts on those angular momentum components that are not already
considered explicitly in the non-local, angular-momentum dependend pseudopotentials v psℓ . Typically
it is chosen to cancel the most expensive nonlocal terms, the one corresponding to the highest
physically relevant angular momentum.

The pseudopotential v ps(~r , ~r ′) is non-local as its depends on two position arguments, ~r and ~r ′.
The expectation values are evaluated as a double integral

〈ψ̃|v̂ps |ψ̃〉 =
∫

d3r

∫

d3r ′ ψ̃∗(~r )v ps(~r ,~r ′)ψ̃(~r ′) (11.14)

1A semi-local potential is local in the radial coordinate, but non-local in the angular coordinates.
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The semi-local form of the pseudopotential given in Eq. 11.13 is computationally expensive.
Therefore, in practice one uses a separable form of the pseudopotential [108, 109, 110]

v̂ ps ≈
∑

i ,j

v̂ ps |φ̃i 〉
[
〈φ̃j |v̂ ps |φ̃i 〉

]−1
i ,j
〈φ̃j |v̂ ps . (11.15)

Thus, the projection onto spherical harmonics used in the semi-local form of Eq. 11.13 is replaced
by a projection onto angular momentum dependent functions v̂ ps |φ̃i 〉.

The indices i and j are composite indices containing the atomic-site index R, the angular mo-
mentum quantum numbers ℓ,m and an additional index α. The index α distinguishes partial waves
with otherwise identical indices R, ℓ,m when more than one partial wave per site and angular mo-
mentum is allowed. The partial waves may be constructed as eigenstates of the hamiltonian with the
pseudopotential v̂ psℓ for a set of energies.

One can show that the identity of Eq. 11.15 holds by applying a wavefunction |ψ̃〉 =
∑

i |φ̃i〉ci
to both sides. If the set of pseudo partial waves |φ̃i〉 in Eq. 11.15 is complete, the identity is exact.
The advantage of the separable form is that 〈φ̃|v̂ ps is treated as one function, so that expectation
values are reduced to combinations of simple scalar products 〈φ̃i |v̂ ps |ψ̃〉.

The total energy of the pseudopotential method can be written in the form

E =
∑

n

fn〈ψ̃n|
~̂p 2

2me
|ψ̃n〉+ Esel f +

∑

n

fn〈ψ̃n|v̂ps |ψ̃n〉

+
1

2

∫

d3r

∫

d3r ′
e2
(

ñ(~r) + Z̃(~r)
)(

ñ(~r ′) + Z̃(~r ′)
)

4πǫ0|~r − ~r ′|
+ Exc [ñ(~r)] . (11.16)

The constant Esel f is adjusted such that the total energy of the atom is the same for an all-electron
calculation and the pseudopotential calculation.

For the atom, from which it has been constructed, this construction guarantees that the pseu-
dopotential method produces the correct one-particle energies for the valence states and that the
wave functions have the desired shape.

While pseudopotentials have proven to be accurate for a large variety of systems, there is no
strict guarantee that they produce the same results as an all-electron calculation, if they are used in
a molecule or solid. The error sources can be divided into two classes:

• Energy transferability problems: Even for the potential of the reference atom, the scattering
properties are accurate only in given energy window.

• Charge transferability problems: In a molecule or crystal, the potential differs from that of the
isolated atom. The pseudopotential, however, is strictly valid only for the isolated atom.

The plane-wave basis set for the pseudo wavefunctions is defined by the shortest wave length
λ = 2π/|~G|, where ~G is the wave vector, via the so-called plane-wave cutoff EPW =

~
2G2max
2me

with

Gmax = max{|~G|}. It is often specified in Rydberg (1 Ry=12 H≈13.6 eV). The plane-wave cutoff is
the highest kinetic energy of all basis functions. The basis-set convergence can systematically be
controlled by increasing the plane-wave cutoff.

The charge transferability is substantially improved by including a nonlinear core correction [111]
into the exchange-correlation term of Eq. 11.16. Hamann [?] showed how to construct pseudopoten-
tials also from unbound wavefunctions. Vanderbilt [?, ?] generalized the pseudopotential method to
non-normconserving pseudopotentials, so-called ultra-soft pseudopotentials, which dramatically im-
proves the basis-set convergence. The formulation of ultra-soft pseudopotentials has already many
similarities with the projector augmented-wave method. Truncated separable pseudopotentials suf-
fer sometimes from so-called ghost states. These are unphysical core-like states, which render the
pseudopotential useless. These problems have been discussed by Gonze [112]. Quantities such as
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hyperfine parameters that depend on the full wavefunctions near the nucleus, can be extracted ap-
proximately [113]. Good reviews of the pseudopotential methodology have been written by Payne et
al.[?] and Singh [89].

In 1985 R. Car and M. Parrinello published the ab-initio molecular dynamics method [114]. Simu-
lations of the atomic motion have become possible on the basis of state-of-the-art electronic structure
methods. Besides making dynamical phenomena and finite temperature effects accessible to elec-
tronic structure calculations, the ab-initio molecular dynamics method also introduced a radically new
way of thinking into electronic structure methods. Diagonalization of a Hamilton matrix has been
replaced by classical equations of motion for the wavefunction coefficients. If one applies friction, the
system is quenched to the ground state. Without friction truly dynamical simulations of the atomic
structure are performed. By using thermostats [115, 116, 117, 118], simulations at constant tem-
perature can be performed. The Car-Parrinello method treats electronic wavefunctions and atomic
positions on an equal footing.

11.4 Projector augmented-wave method

The Car-Parrinello method had been implemented first for the pseudopotential approach. There
seemed to be insurmountable barriers against combining the new technique with augmented wave
methods. The main problem was related to the potential dependent basis set used in augmented
wave methods: the Car-Parrinello method requires a well defined and unique total energy functional
of atomic positions and basis set coefficients. Furthermore the analytic evaluation of the first partial
derivatives of the total energy with respect to wave functions, ∂E

∂〈ψn| = Ĥ|ψn〉fn, and atomic positions,

the forces ~Fj = −~∇jE, must be possible. Therefore, it was one of the main goals of the PAW method
to introduce energy and potential independent basis sets, which were as accurate as the previously
used augmented basis sets. Other requirements have been: (1) The method should at least match
the efficiency of the pseudopotential approach for Car-Parrinello simulations. (2) It should become
an exact theory when converged and (3) its convergence should be easily controlled. We believe that
these criteria have been met, which explains why the use of the PAW method has become increasingly
widespread today.

Transformation theory

At the root of the PAW method lies a transformation that maps the true wavefunctions with their
complete nodal structure onto auxiliary wavefunctions that are numerically convenient. We aim
for smooth auxiliary wavefunctions, which have a rapidly convergent plane-wave expansion. With
such a transformation we can expand the auxiliary wave functions into a convenient basis set such
as plane waves, and evaluate all physical properties after reconstructing the related physical (true)
wavefunctions.

Let us denote the physical one-particle wavefunctions as |ψn〉 and the auxiliary wavefunctions
as |ψ̃n〉. Note that the tilde refers to the representation of smooth auxiliary wavefunctions and n
is the label for a one-particle state and contains a band index, a k-point and a spin index. The
transformation from the auxiliary to the physical wave functions is denoted by T̂ , i.e.

|ψn〉 = T̂ |ψ̃n〉 . (11.17)

Now we express the constrained density functional F of Eq. 11.2 in terms of our auxiliary wave-
functions

F
[

{T̂ |ψ̃n〉}, {Λm,n}
]

= E
[

{T̂ |ψ̃n〉}
]

−
∑

n,m

[

〈ψ̃n|T̂ †T̂ |ψ̃m〉 − δn,m
]

Λm,n . (11.18)

The variational principle with respect to the auxiliary wavefunctions yields

T̂ †ĤT̂ |ψ̃n〉 = T̂ †T̂ |ψ̃n〉ǫn . (11.19)
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Again, we obtain a Schrödinger-like equation (see derivation of Eq. 11.5), but now the Hamilton

operator has a different form, ˆ̃H = T̂ †ĤT̂ , an overlap operator ˆ̃O = T̂ †T̂ occurs, and the resulting
auxiliary wavefunctions are smooth.

When we evaluate physical quantities, we need to evaluate expectation values of an operator Â,
which can be expressed in terms of either the true or the auxiliary wavefunctions, i.e.

〈Â〉 =
∑

n

fn〈ψn|Â|ψn〉 =
∑

n

fn〈ψ̃n|T̂ †ÂT̂ |ψ̃n〉 . (11.20)

In the representation of auxiliary wavefunctions we need to use transformed operators ˆ̃A = T̂ †ÂT̂ .
As it is, this equation only holds for the valence electrons. The core electrons are treated differently,
as will be shown below.

The transformation takes us conceptionally from the world of pseudopotentials to that of aug-
mented wave methods, which deal with the full wavefunctions. We will see that our auxiliary wave-
functions, which are simply the plane-wave parts of the full wavefunctions, translate into the wave-
functions of the pseudopotential approach. In the PAW method the auxiliary wavefunctions are used
to construct the true wavefunctions and the total energy functional is evaluated from the latter. Thus
it provides the missing link between augmented wave methods and the pseudopotential method, which
can be derived as a well-defined approximation of the PAW method.

In the original paper [84], the auxiliary wavefunctions were termed pseudo wavefunctions and
the true wavefunctions were termed all-electron wavefunctions, in order to make the connection
more evident. We avoid this notation here, because it resulted in confusion in cases, where the
correspondence is not clear-cut.

Transformation operator

So far we have described how we can determine the auxiliary wave functions of the ground state and
how to obtain physical information from them. What is missing is a definition of the transformation
operator T̂ .

The operator T̂ has to modify the smooth auxiliary wave function in each atomic region, so that
the resulting wavefunction has the correct nodal structure. Therefore, it makes sense to write the
transformation as identity plus a sum of atomic contributions ŜR

T̂ = 1̂ +
∑

R

ŜR. (11.21)

For every atom, ŜR adds the difference between the true and the auxiliary wavefunction.
The local terms ŜR are defined in terms of solutions |φi 〉 of the Schrödinger equation for the

isolated atoms. This set of partial waves |φi 〉 will serve as a basis set so that, near the nucleus,
all relevant valence wavefunctions can be expressed as superposition of the partial waves with yet
unknown coefficients as

ψ(~r) =
∑

i∈R
φi(~r)ci for |~r − ~RR| < rc,R . (11.22)

With i ∈ R we indicate those partial waves that belong to site R.
Since the core wavefunctions do not spread out into the neighboring atoms, we will treat them

differently. Currently we use the frozen-core approximation, which imports the density and the energy
of the core electrons from the corresponding isolated atoms. The transformation T̂ shall produce
only wavefunctions orthogonal to the core electrons, while the core electrons are treated separately.
Therefore, the set of atomic partial waves |φi 〉 includes only valence states that are orthogonal to
the core wavefunctions of the atom.

For each of the partial waves we choose an auxiliary partial wave |φ̃i〉. The identity

|φi 〉 = (1̂ + ŜR)|φ̃i〉 for i ∈ R
ŜR|φ̃i 〉 = |φi 〉 − |φ̃i 〉 (11.23)
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defines the local contribution ŜR to the transformation operator. Since 1̂ + ŜR should change the
wavefunction only locally, we require that the partial waves |φi〉 and their auxiliary counter parts |φ̃i 〉
are pairwise identical beyond a certain radius rc,R.

φi(~r) = φ̃i(~r) for i ∈ R and |~r − ~RR| > rc,R (11.24)

Note that the partial waves are not necessarily bound states and are therefore not normalizable
unless we truncate them beyond a certain radius rc,R. The PAW method is formulated such that the
final results do not depend on the location where the partial waves are truncated, as long as this is
not done too close to the nucleus and identical for auxiliary and all-electron partial waves.

In order to be able to apply the transformation operator to an arbitrary auxiliary wavefunction,
we need to be able to expand the auxiliary wavefunction locally into the auxiliary partial waves

ψ̃(~r) =
∑

i∈R
φ̃i(~r)ci =

∑

i∈R
φ̃i(~r )〈p̃i |ψ̃〉 for |~r − ~RR| < rc,R , (11.25)

which defines the projector functions |p̃i 〉. The projector functions probe the local character of
the auxiliary wave function in the atomic region. Examples of projector functions are shown in
Figure 11.2. From Eq. 11.25 we can derive

∑

i∈R |φ̃i〉〈p̃i | = 1, which is valid within rc,R. It can be
shown by insertion, that the identity Eq. 11.25 holds for any auxiliary wavefunction |ψ̃〉 that can be
expanded locally into auxiliary partial waves |φ̃i 〉, if

〈p̃i |φ̃j〉 = δi ,j for i , j ∈ R . (11.26)

Note that neither the projector functions nor the partial waves need to be mutually orthogonal. The
projector functions are fully determined with the above conditions and a closure relation that is related
to the unscreening of the pseudopotentials (see Eq. 90 in [84]).

Fig. 11.2: Projector functions of the chlorine atom. Top: two s-type projector functions, middle:
p-type, bottom: d-type.

By combining Eq. 11.23 and Eq. 11.25, we can apply ŜR to any auxiliary wavefunction.

ŜR|ψ̃〉 =
∑

i∈R
ŜR|φ̃i〉〈p̃i |ψ̃〉 =

∑

i∈R

(

|φi 〉 − |φ̃i〉
)

〈p̃i |ψ̃〉 . (11.27)

Hence, the transformation operator is

T̂ = 1̂ +
∑

i

(

|φi〉 − |φ̃i 〉
)

〈p̃i | , (11.28)
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where the sum runs over all partial waves of all atoms. The true wave function can be expressed as

|ψ〉 = |ψ̃〉+
∑

i

(

|φi〉 − |φ̃i 〉
)

〈p̃i |ψ̃〉 = |ψ̃〉+
∑

R

(

|ψ1R〉 − |ψ̃1R〉
)

(11.29)

with

|ψ1R〉 =
∑

i∈R
|φi〉〈p̃i |ψ̃〉 (11.30)

|ψ̃1R〉 =
∑

i∈R
|φ̃i〉〈p̃i |ψ̃〉 . (11.31)

In Fig. 11.3 the decomposition of Eq. 11.29 is shown for the example of the bonding p-σ state
of the Cl2 molecule.

Fig. 11.3: Bonding p-σ orbital of the Cl2 molecule and its decomposition into auxiliary wavefunction
and the two one-center expansions. Top-left: True and auxiliary wave function; top-right: auxiliary
wavefunction and its partial wave expansion; bottom-left: the two partial wave expansions; bottom-
right: true wavefunction and its partial wave expansion.

To understand the expression Eq. 11.29 for the true wave function, let us concentrate on different
regions in space. (1) Far from the atoms, the partial waves are, according to Eq. 11.24, pairwise
identical so that the auxiliary wavefunction is identical to the true wavefunction, that is ψ(~r) = ψ̃(~r).
(2) Close to an atom R, however, the auxiliary wavefunction is, according to Eq. 11.25, identical to
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its one-center expansion, that is ψ̃(~r) = ψ̃1R(~r). Hence the true wavefunction ψ(~r ) is identical to
ψ1R(~r), which is built up from partial waves that contain the proper nodal structure.

In practice, the partial wave expansions are truncated. Therefore, the identity of Eq. 11.25 does
not hold strictly. As a result, the plane waves also contribute to the true wavefunction inside the
atomic region. This has the advantage that the missing terms in a truncated partial wave expansion
are partly accounted for by plane waves. This explains the rapid convergence of the partial wave
expansions. This idea is related to the additive augmentation of the LAPW method of Soler [90].

Frequently, the question comes up, whether the transformation Eq. 11.28 of the auxiliary wave-
functions indeed provides the true wavefunction. The transformation should be considered merely
as a change of representation analogous to a coordinate transform. If the total energy functional
is transformed consistently, its minimum will yield auxiliary wavefunctions that produce the correct
wave functions |ψ〉.

Expectation values

Expectation values can be obtained either from the reconstructed true wavefunctions or directly from
the auxiliary wave functions

〈Â〉 =
∑

n

fn〈ψn|Â|ψn〉+
Nc∑

n=1

〈φcn|Â|φcn〉

=
∑

n

fn〈ψ̃n|T̂ †ÂT̂ |ψ̃n〉+
Nc∑

n=1

〈φcn|Â|φcn〉 , (11.32)

where fn are the occupations of the valence states and Nc is the number of core states. The first
sum runs over the valence states, and second over the core states |φcn〉.

Now we can decompose the matrix element for a wavefunction ψ into its individual contributions
according to Eq. 11.29.

〈ψ|Â|ψ〉 = 〈ψ̃ +
∑

R

(ψ1R − ψ̃1R)|Â|ψ̃ +
∑

R′

(ψ1R′ − ψ̃1R′)〉

= 〈ψ̃|Â|ψ̃〉+
∑

R

(

〈ψ1R|Â|ψ1R〉 − 〈ψ̃1R|Â|ψ̃1R〉
)

︸ ︷︷ ︸

part 1

+
∑

R

(

〈ψ1R − ψ̃1R|Â|ψ̃ − ψ̃1R〉+ 〈ψ̃ − ψ̃1R|Â|ψ1R − ψ̃1R〉
)

︸ ︷︷ ︸

part 2

+
∑

R 6=R′
〈ψ1R − ψ̃1R|Â|ψ1R′ − ψ̃1R′〉

︸ ︷︷ ︸

part 3

(11.33)

Only the first part of Eq. 11.33 is evaluated explicitly, while the second and third parts of Eq. 11.33 are
neglected, because they vanish for sufficiently local operators as long as the partial wave expansion is
converged: The function ψ1R−ψ̃1R vanishes per construction beyond its augmentation region, because
the partial waves are pairwise identical beyond that region. The function ψ̃ − ψ̃1R vanishes inside its
augmentation region, if the partial wave expansion is sufficiently converged. In no region of space are
both functions ψ1R − ψ̃1R and ψ̃ − ψ̃1R simultaneously nonzero. Similarly the functions ψ1R − ψ̃1R from
different sites are never non-zero in the same region in space. Hence, the second and third parts
of Eq. 11.33 vanish for operators such as the kinetic energy −~2

2me

~∇2 and the real space projection
operator |r 〉〈r |, which produces the electron density. For truly nonlocal operators the parts 2 and 3
of Eq. 11.33 would have to be considered explicitly.
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The expression, Eq. 11.32, for the expectation value can therefore be written with the help of
Eq. 11.33 as

〈Â〉 =
∑

n

fn

(

〈ψ̃n|Â|ψ̃n〉+ 〈ψ1n |Â|ψ1n〉 − 〈ψ̃1n |Â|ψ̃1n〉
)

+

Nc∑

n=1

〈φcn|Â|φcn〉

=
∑

n

fn〈ψ̃n|Â|ψ̃n〉+
Nc∑

n=1

〈φ̃cn|Â|φ̃cn〉

+
∑

R

(∑

i ,j∈R
Di ,j〈φj |Â|φi〉+

Nc,R∑

n∈R
〈φcn|Â|φcn〉

)

−
∑

R

(∑

i ,j∈R
Di ,j〈φ̃j |Â|φ̃i〉+

Nc,R∑

n∈R
〈φ̃cn|Â|φ̃cn〉

)

, (11.34)

where D is the one-center density matrix defined as

Di ,j =
∑

n

fn〈ψ̃n|p̃j〉〈p̃i |ψ̃n〉 =
∑

n

〈p̃i |ψ̃n〉fn〈ψ̃n|p̃j 〉 . (11.35)

The auxiliary core states, |φ̃cn〉 allow us to incorporate the tails of the core wavefunction into
the plane-wave part, and therefore assure that the integrations of partial wave contributions cancel
exactly beyond rc . They are identical to the true core states in the tails, but are a smooth continuation
inside the atomic sphere. It is not required that the auxiliary wave functions are normalized.

Following this scheme, the electron density is given by

n(~r) = ñ(~r) +
∑

R

(

n1R(~r)− ñ1R(~r)
)

(11.36)

ñ(~r) =
∑

n

fnψ̃
∗
n(~r)ψ̃n(~r) + ñc(~r)

n1R(~r) =
∑

i ,j∈R
Di ,jφ

∗
j (~r)φi(~r) + nc,R(~r)

ñ1R(~r) =
∑

i ,j∈R
Di ,j φ̃

∗
j (~r)φ̃i(~r) + ñc,R(~r) , (11.37)

where nc,R is the core density of the corresponding atom and ñc,R is the auxiliary core density, which
is identical to nc,R outside the atomic region, but smooth inside.

Before we continue, let us discuss a special point: The matrix elements of a general operator
with the auxiliary wavefunctions may be slowly converging with the plane-wave expansion, because
the operator Â may not be well behaved. An example of such an operator is the singular electrostatic
potential of a nucleus. This problem can be alleviated by adding an “intelligent zero”: If an operator B̂
is purely localized within an atomic region, we can use the identity between the auxiliary wavefunction
and its own partial wave expansion

0 = 〈ψ̃n|B̂|ψ̃n〉 − 〈ψ̃1n |B̂|ψ̃1n〉 . (11.38)

Now we choose an operator B̂ so that it cancels the problematic behavior of the operator Â, but
is localized in a single atomic region. By adding B̂ to the plane-wave part and the matrix elements
with its one-center expansions, the plane-wave convergence can be improved without affecting the
converged result. A term of this type, namely ˆ̄v will be introduced in the next section to cancel the
Coulomb singularity of the potential at the nucleus.
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Total energy

Like wavefunctions and expectation values, also the total energy can be divided into three parts.

E
[

{|ψ̃n〉}, {RR}
]

= Ẽ +
∑

R

(

E1R − Ẽ1R
)

(11.39)

The plane-wave part Ẽ involves only smooth functions and is evaluated on equi-spaced grids in real
and reciprocal space. This part is computationally most demanding, and is similar to the expressions
in the pseudopotential approach.

Ẽ =
∑

n

〈ψ̃n|
~̂p 2

2me
|ψ̃n〉+

1

2

∫

d3r

∫

d3r ′
e2
(

ñ(~r) + Z̃(~r)
)(

ñ(~r ′) + Z̃(~r ′)
)

4πǫ0|~r − ~r ′|

+

∫

d3r v̄(~r )ñ(~r ) + Exc [ñ] (11.40)

Z̃(r) is an angular-momentum dependent core-like density that will be described in detail below.
The remaining parts can be evaluated on radial grids in a spherical-harmonics expansion. The nodal
structure of the wavefunctions can be properly described on a logarithmic radial grid that becomes
very fine near the nucleus,

E1R =
∑

i ,j∈R
Di ,j〈φj |

~̂p 2

2me
|φi 〉+

Nc,R∑

n∈R
〈φcn|

~̂p 2

2me
|φcn〉

+
1

2

∫

d3r

∫

d3r ′
e2
(

n1(~r ) + Z(~r)
)(

n1(~r ′) + Z(~r ′)
)

|~r − ~r ′| + Exc [n
1] (11.41)

Ẽ1R =
∑

i ,j∈R
Di ,j〈φ̃j |

~̂p 2

2me
|φ̃i 〉+

1

2

∫

d3r

∫

d3r ′
e2
(

ñ1(~r) + Z̃(~r)
)(

ñ1(~r ′) + Z̃(~r ′)
)

4πǫ0|~r − ~r ′|

+

∫

d3r v̄(~r)ñ1(~r ) + Exc [ñ
1] . (11.42)

The compensation charge density Z̃(~r) =
∑

R Z̃R(~r) is given as a sum of angular momentum de-
pendent Gauss functions, which have an analytical plane-wave expansion. A similar term occurs also
in the pseudopotential approach. In contrast to the norm-conserving pseudopotential approach, how-
ever, the compensation charge of an atom Z̃R is non-spherical and constantly adapts instantaneously
to the environment. It is constructed such that

n1R(~r ) + ZR(~r )− ñ1R(~r)− Z̃R(~r) (11.43)

has vanishing electrostatic multipole moments for each atomic site. With this choice, the electrostatic
potentials of the augmentation densities vanish outside their spheres. This is the reason why there
is no electrostatic interaction of the one-center parts between different sites.

The compensation charge density as given here is still localized within the atomic regions. A
technique similar to an Ewald summation, however, allows it to be replaced by a very extended
charge density. Thus we can achieve, that the plane-wave convergence of the total energy is not
affected by the auxiliary density.

The potential v̄ =
∑

R v̄R, which occurs in Eqs. 11.40 and 11.42 enters the total energy in the
form of “intelligent zeros” described in Eq. 11.38

0 =
∑

n

fn
(
〈ψ̃n|v̄R|ψ̃n〉 − 〈ψ̃1n |v̄R|ψ̃1n〉

)
=
∑

n

fn〈ψ̃n|v̄R|ψ̃n〉 −
∑

i ,j∈R
Di ,j〈φ̃i |v̄R|φ̃j 〉 . (11.44)

The main reason for introducing this potential is to cancel the Coulomb singularity of the potential in
the plane-wave part. The potential v̄ allows us to influence the plane-wave convergence beneficially,
without changing the converged result. v̄ must be localized within the augmentation region, where
Eq. 11.25 holds.
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Approximations

Once the total energy functional provided in the previous section has been defined, everything else
follows: Forces are partial derivatives with respect to atomic positions. The potential is the derivative
of the non-kinetic energy contributions to the total energy with respect to the density, and the
auxiliary Hamiltonian follows from derivatives H̃|ψ̃n〉 with respect to auxiliary wave functions. The
fictitious Lagrangian approach of Car and Parrinello [114] does not allow any freedom in the way
these derivatives are obtained. Anything else than analytic derivatives will violate energy conservation
in a dynamical simulation. Since the expressions are straightforward, even though rather involved,
we will not discuss them here.

All approximations are incorporated already in the total energy functional of the PAW method.
What are those approximations?

• Firstly we use the frozen-core approximation. In principle this approximation can be overcome.

• The plane-wave expansion for the auxiliary wavefunctions must be complete. The plane-wave
expansion is controlled easily by increasing the plane-wave cutoff defined as EPW = 1

2~
2G2max .

Typically we use a plane-wave cutoff of 30 Ry.

• The partial wave expansions must be converged. Typically we use one or two partial waves per
angular momentum (ℓ,m) and site. It should be noted that the partial wave expansion is not
variational, because it changes the total energy functional and not the basis set for the auxiliary
wavefunctions.

We do not discuss here numerical approximations such as the choice of the radial grid, since those
are easily controlled.

Relation to pseudopotentials

We mentioned earlier that the pseudopotential approach can be derived as a well defined approxi-
mation from the PAW method: The augmentation part of the total energy ∆E = E1 − Ẽ1 for one
atom is a functional of the one-center density matrix D defined in Eq. 11.35. The pseudopotential
approach can be recovered if we truncate a Taylor expansion of ∆E about the atomic density matrix
after the linear term. The term linear in D is the energy related to the nonlocal pseudopotential.

∆E(D) = ∆E(Dat) +
∑

i ,j

∂∆E

∂Di ,j

∣
∣
∣
∣
Dat
(Di ,j −Dati ,j ) +O(D −Dat)2

= Esel f +
∑

n

fn〈ψ̃n|v̂ ps |ψ̃n〉 −
∫

d3r v̄(~r)ñ(~r) +O(D −D)2 , (11.45)

which can directly be compared with the total energy expression Eq. 11.16 of the pseudopotential
method. The local potential v̄(~r ) of the pseudopotential approach is identical to the corresponding
potential of the projector augmented-wave method. The remaining contributions in the PAW total
energy, namely Ẽ, differ from the corresponding terms in Eq. 11.16 only in two features: our aux-
iliary density also contains an auxiliary core density, reflecting the nonlinear core correction of the
pseudopotential approach, and the compensation density Z̃(~r) is non-spherical and depends on the
wave function. Thus we can look at the PAW method also as a pseudopotential method with a
pseudopotential that adapts instantaneously to the electronic environment. In the PAW method, the
explicit nonlinear dependence of the total energy on the one-center density matrix is properly taken
into account.

What are the main advantages of the PAW method compared with the pseudopotential approach?
Firstly all errors can be systematically controlled, so that there are no transferability errors. As

shown by Watson [?] and Kresse [119], most pseudopotentials fail for high spin atoms such as Cr.
While it is probably true that pseudopotentials can be constructed that cope even with this situation, a
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failure can not be known beforehand, so that some empiricism remains in practice: A pseudopotential
constructed from an isolated atom is not guaranteed to be accurate for a molecule. In contrast, the
converged results of the PAW method do not depend on a reference system such as an isolated atom,
because PAW uses the full density and potential.

Like other all-electron methods, the PAW method provides access to the full charge and spin
density, which is relevant, for example, for hyperfine parameters. Hyperfine parameters are sensitive
probes of the electron density near the nucleus. In many situations they are the only information
available that allows us to deduce atomic structure and chemical environment of an atom from
experiment.

The plane-wave convergence is more rapid than in norm-conserving pseudopotentials and should
in principle be equivalent to that of ultra-soft pseudopotentials [?]. Compared to the ultra-soft
pseudopotentials, however, the PAW method has the advantage that the total energy expression is
less complex and can therefore be expected to be more efficient.

The construction of pseudopotentials requires us to determine a number of parameters. As they
influence the results, their choice is critical. Also the PAW methods provides some flexibility in the
choice of auxiliary partial waves. However, this choice does not influence the converged results.

Recent developments

Since the first implementation of the PAW method in the CP-PAW code [84], a number of groups
have adopted the PAW method. The second implementation, called PWPAW, was done by the group
of Holzwarth[?, 120, 121, 122]. Several codes, previously using pseudopotentials have extended
their code to PAW. Among them are the VASP code with the PAW implementation of Kresse
and Joubert[119]. The PAW implementation of the ABINIT code[123] has been done by Torrent et
al.[124]. An independent PAW code has been developed by Valiev and Weare [?]. This implementation
has entereed the NWChem code [125, 126]. The PAW method has also been implemented by W.
Kromen [127] into the EStCoMPP code of Blügel and Schröder. Other implementations are in the
Quantum Espresso code [128]2 and Socorro3. A real-space-grid based version of the PAW method
is the code GPAW developed by Mortensen et al. [129].

Another branch of methods uses the reconstruction of the PAW method, without taking into
account the full wavefunctions in the energy minimization. Following chemists’ notation, this ap-
proach could be termed “post-pseudopotential PAW”. This development began with the evaluation
for hyperfine parameters from a pseudopotential calculation using the PAW reconstruction operator
[113] and is now used in the pseudopotential approach to calculate properties that require the correct
wavefunctions such as hyperfine parameters.

The implementation of the PAW method by Kresse and Joubert [119] has been particularly useful
as they had an implementation of PAW in the same code as the ultra-soft pseudopotentials, so that
they could critically compare the two approaches. Their conclusion is that both methods compare
well in most cases, but they found that magnetic energies are seriously – by a factor two – in error
in the pseudopotential approach, while the results of the PAW method were in line with other all-
electron calculations using the linear augmented plane-wave method. As an aside, Kresse and Joubert
claim incorrectly that their implementation is superior as it includes a term that is analogous to the
non-linear core correction of pseudopotentials [111]: this term, however, is already included in the
original version in the form of the pseudized core density. Recently, a careful comparision[130] has
shown that the original formulation[84] is more reliable.

Several extensions of the PAW have been done in the recent years: For applications in chemistry
truly isolated systems are often of great interest. As any plane-wave based method introduces periodic
images, the electrostatic interaction between these images can cause serious errors. The problem
has been solved by mapping the charge density onto a point charge model, so that the electrostatic
interaction could be subtracted out in a self-consistent manner [131]. In order to include the influence

2Quantum Espresso is maintained by Stefano Gironcoli andLorenzo Paulatto
3http://dft.sandia.gov/socorro. Socorrow is maintained by Alan Wright and Normand Modine
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of the environment, the latter was simulated by simpler force fields using the quantum-mechanics
molecular-mechanics (QM-MM) approach [132].

In order to overcome the limitations of the density functional theory several extensions have
been performed. Bengone [133] implemented the LDA+U approach into our CP-PAW code. Soon
after this, Arnaud [?] accomplished the implementation of the GW approximation into our CP-PAW
code. The VASP-version of PAW [?] and our CP-PAW code have now been extended to include a
non-collinear description of the magnetic moments. In a non-collinear description, the Schrödinger
equation is replaced by the Pauli equation with two-component spinor wavefunctions.

The PAW method has proven useful to evaluate electric field gradients [134] and magnetic hyper-
fine parameters with high accuracy [6]. Invaluable will be the prediction of NMR chemical shifts using
the GIPAW method of Pickard and Mauri [135], which is based on their earlier work [136]. While the
GIPAW is implemented in a post-pseudopotential manner, the extension to a self-consistent PAW cal-
culation should be straightforward. An post-pseudopotential approach has also been used to evaluate
core level spectra [?] and momentum matrix elements [?].
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Chapter 12

Born-Oppenheimer approximation
and Classical Limit

The Born-Oppenheimer approximation[137, 138] simplifies the many-particle problem considerably
by separating the electronic and nuclear coordinates. This method is similar, but not identical to the
method of separation of variables.

We refer here to the formalism as described in appendix VIII of the Book of Born and Huang[138].
The method apparently goes back to an article by M. Born from 1951[?]

12.1 Separation of electronic and nuclear degrees of freedom

Our ultimate goal is to determine the wave function Φ(~x1, . . . , ~xN , ~R1, . . . , ~RM , t), which describes
the electronic degrees of freedom ~x1, . . . , ~xN and the atomic positions ~R1, . . . , ~RM . from the time-
dependent Schrödinger equation Eq. 6.1

i~∂t |Φ(t)〉
Eq. 6.1
= Ĥ|Φ(t)〉 (12.1)

where the Hamiltonian is the one given in Eq. 6.4.
In the Born-Oppenheimer approximation, one first determines the electronic eigenstates for a fixed

set of atomic positions. This solution forms the starting point for the description of the dynamics of
the nuclei.

We will formulate an ansatz for the time-dependent many-particle wave functions. For this ansatz
we need the Born-Oppenheimer wave functions, which are the electronic wave function for a frozen
set of nuclear positions.

Born-Oppenheimer wave functions and Born-Oppenheimer surfaces

Firstly, we construct the Born-Oppenheimer Hamiltonian ĤBO by removing all terms that depend on
the momenta of the nuclei from the many-particle Hamiltonian given in Eq. 6.4.

ĤBO(~R1, . . . , ~RM) =

N∑

i=1

−~2
2me

~∇2~ri
︸ ︷︷ ︸

Ekin,e

+
1

2

M∑

i 6=j

e2ZiZj

4πǫ0|~Ri − ~Rj |
︸ ︷︷ ︸

EC,nuc−nuc

−
N∑

i=1

M∑

j=1

e2Zj

4πǫ0|~ri − ~Rj |
︸ ︷︷ ︸

EC ,e−nuc

+
1

2

N∑

i 6=j

e2

4πǫ0|~ri − ~rj |
︸ ︷︷ ︸

EC ,e−e

(12.2)
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The Born-Oppenheimer Hamitonian acts in the Hilbert space of electronic wave functions, and de-
pends parametrically on the nuclear positions. In other words, the Born-Oppenheimer Hamitonian
does not contain any gradients acting on the nuclear positions.

In order to simplify the equations, I combine all the electronic coordinates and spin indices into a
vector ~x = (~x1, . . . , ~xN) and the nuclear positions into a 3M dimensional vector ~R = (~R1, . . . , ~RM).
Thus, the many-particle wave function acting on electrons and nuclei will be written as Φ(~x, ~R, t) =
〈~x, ~R|Φ(t)〉.

In addition, I introduce another notation, where the wave function is a function of atomic position,
but a state |Φ(~R, t)〉 acting in the Hilbert space of electronic states. that is Φ(~x, ~R, t) = 〈~x |Φ(~R, t)〉.

The full Hamiltonian of Eq. 6.4 is obtained by adding again the nuclear kinetic energy to the
Born-Oppenheimer Hamiltonian

Ĥ =

M∑

j=1

−~2
2Mj

~∇2~Rj + Ĥ
BO (12.3)

In the second step, we determine the Born-Oppenheimer wave functions |ΨBOn (~R)〉 and the Born-
Oppenheimer surfaces EBOn (~R) from

[

ĤBO(~R)− EBOn (~R)
]

|ΨBOn (~R)〉 = 0 (12.4)

Eq. 12.4 corresponds to a Schrödinger equation for the electrons feeling the static potential for frozen
nuclear positions. The Born-Oppenheimer surfaces EBOn (~R) are simply the position-dependent en-
ergy eigenvalues of the Born-Oppenheimer Hamitonian. For each atomic configuration we obtain
a ground-state Born-Oppenheimer surface and infinitely many excited-state Born-Oppenheimer sur-
faces, which are labeled by the quantum number n. Similarly, the Born-Oppenheimer wave functions
ΨBOn (~x1, . . . , ~xN , ~R1, . . . , ~RM) depend parametrically on the nuclear positions ~R.

The Born-Oppenheimer wave functions are orthogonal for each set of atomic positions, i.e.

〈ΨBOm (~R)|ΨBOn (~R)〉 =
∫

d4Nx ΨBOm
∗
(~x, ~R)ΨBOn (~x, ~R) = δm,n (12.5)

Ansatz for the electronic-nuclear wave function

Now we are ready to write down the ansatz for the many-particle wave function of a system of
electrons and nuclei: We express the many-particle wave function Φ(~x, ~R, t) as a product of this
Born-Oppenheimer wave function ΨBOn (~x, ~R) and a time-dependent nuclear wave function φ(~R, t),
which is a time-dependent wave function φn(~R1, . . . , ~RM , t) of the nuclear coordinates only.

BORN-HUANG EXPANSION

Φ(~x, ~R, t) =
∑

n

ΨBOn (~x, ~R)φn(~R, t) (12.6)

The multi-valued nuclear wave function obeys the normalization condition

∑

n

∫

d3MR φ∗n(~R, t)φ
∗
n(~R, t) = 1 (12.7)

It is important to realize that the Born-Huang expansion for the wave function is not an approxima-
tion. Every wave function can exactly be represented in this form.



12 BORN-OPPENHEIMER APPROXIMATION AND CLASSICAL LIMIT 159

Derivation of the Nuclear Schrödinger equation

When the Born-Huang expansion, Eq. 12.6, is inserted into the many-particle Schrödinger equation
Eq. 6.1 with the full Hamiltonian Eq. 6.4, we obtain

i~∂t

[
∑

n

ΨBOn (~x, ~R)φn(~R, t)

]

Eq. 6.1
= Ĥ

[
∑

n

ΨBOn (~x, ~R)φn(~R, t)

]

Eq. 12.3
=

[
M∑

i=1

−~2
2Mi

~∇2Ri + Ĥ
BO

][
∑

n

ΨBOn (~x, ~R)φn(~R, t)

]

Eq. 12.4
=

∑

n

ΨBOn (~x, ~R)

[
M∑

i=1

−~2
2Mi

~∇2Ri + E
BO
n (~R)

]

φn(~R, t)

+
∑

n

[
M∑

i=1

−~2
Mi

(

~∇RiΨBOn (~x, ~R)
)

~∇Ri +
M∑

i=1

−~2
2Mi

(

~∇2RiΨ
BO
n (~x, ~R)

)
]

φn(~R, t)

(12.8)

Now we multiply Eq. 12.8 from the left by the complex conjugate Born-Oppenheimer wave function
ΨBOm

∗
(~x, ~R) and integrate over the electronic coordinates. Hereby, we exploit the orthonormality

Eq. 12.5 of the Born-Oppenheimer wave functions.
As the result, we obtain an Schrödinger equation for the nuclear motion alone.

i~∂tφm(~R, t)
Eqs. 12.8,12.5

=

[
M∑

i=1

−~2
2Mi

~∇2Ri + E
BO
m (~R)

]

φm(~R, t)

+
∑

n

[
M∑

i=1

1

Mi
〈ΨBOm |

~

i
~∇Ri |ΨBOn 〉

~

i
~∇Ri +

M∑

i=1

−~2
2Mi
〈ΨBOm |~∇2Ri |Ψ

BO
n 〉
]

φn(~R, t)

(12.9)

Note, that the brackets 〈. . .〉 are evaluated by integrating over the electronic degrees of freedom
only. Thus the matrix elements still depend explicitly on the nuclear coordinates. Note also, that the
gradients ~∇~Ri

in the parentheses act on the nuclear and not the electronic wave functions, which is
easily overlooked.

Up to now, we did not introduce any approximations to arrive at the nuclear Schrödinger equation
Eq. 12.9. We are still on solid ground.

Derivative couplings

In the following, we will discuss the individual terms of Eq. 12.9. Before we continue, however, let
us simplify the notation again: The general structure of Eq. 12.9 is

i~∂tφm(~R, t) =

[
∑

j

~̂P 2j
2Mj

+ EBOm (~R)

]

φm(~R, t) +
∑

n

M∑

j=1

1

Mj

[

~Am,n,j (~R) ~̂Pj + Bm,n(~R)

]

φn(~R, t)

(12.10)

where ~Pj =
~

i
~∇Rj is the momentum vector of the j-th particle and the first and second derivative

couplings are defined by

~Am,n,j (~R) := 〈ΨBOm (~R)|
~

i
~∇Rj |ΨBOn (~R)〉 (12.11)

Bm,n,j (~R) :=
1

2
〈ΨBOm (~R)|

(
~

i
~∇Ri
)2

|ΨBOn (~R)〉 (12.12)
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The first and the second derivative couplings are not independent from each other: The second
derivative coupling B can be expressed by the first derivative couplings ~Am,n,j (~R). This is shown as
follows (see in [139]):

~

i
~∇Rj ~Am,n,j(~R)

Eq. 12.11
=

~

i
~∇Rj
〈

ΨBOm (~R)

∣
∣
∣
∣

~

i
~∇Rj
∣
∣
∣
∣
ΨBOn (~R)

〉

= −
〈
~

i
~∇RjΨBOm (~R)

∣
∣
∣
∣

~

i
~∇Rj
∣
∣
∣
∣
ΨBOn (~R)

〉

+

〈

ΨBOm (~R)

∣
∣
∣
∣

(
~

i
~∇Rj
)2∣∣
∣
∣
ΨBOn (~R)

〉

︸ ︷︷ ︸

2Bm,n,j (~R

= −
〈
~

i
~∇RjΨBOm (~R)

∣
∣
∣
∣

(
∑

k

∣
∣
∣
∣
ΨBOk (~R)

〉〈

ΨBOk (~R)

∣
∣
∣
∣

)

︸ ︷︷ ︸

=1̂

~

i
~∇Rj
∣
∣
∣
∣
ΨBOn (~R)

〉

+ 2Bm,n,j (~R)

= −
∑

k

〈
~

i
~∇RjΨBOm (~R)

∣
∣
∣
∣
ΨBOk (~R)

〉〈

ΨBOk (~R)

∣
∣
∣
∣

~

i
~∇Rj
∣
∣
∣
∣
ΨBOn (~R)

〉

+ 2Bm,n,j (~R)

= −
∑

k

〈

ΨBOk (~R)

∣
∣
∣
∣

~

i
~∇Rj
∣
∣
∣
∣
ΨBOm (~R)

〉∗〈

ΨBOk (~R)

∣
∣
∣
∣

~

i
~∇Rj
∣
∣
∣
∣
ΨBOn (~R)

〉

+ 2Bm,n,j(~R)

= −
∑

k

~A∗k,m,j (~R) ~Ak,n,j (~R) + 2Bm,n,j(~R)

Exploiting that is hermitean in the band indices, ~Am,n,j(~R) = ~A∗n,m,j (~R), which follows from the
defining equation Eq. 12.11, we obtain

Bm,n,j (~R) =
~

i
~∇Rj ~Am,n,j (~R) +

∑

k

~Am,k,j (~R) ~Ak,n,j (~R) (12.13)

Thus, we only need the first derivative couplings, while the second derivative couplings can be
obtained from the former via Eq. 12.13.

Final form for the nuclear Schödinger equation

Here we will develop a relation (see in [139]), that will allow us to put the nuclear Schrödinger
equation into a convenient form

∑

k

(

δk,m
~

i
~∇Rj + ~Am,k,j (~R)

)(

δk,n
~

i
~∇Rj + ~Ak,n,j (~R)

)

= δn,m

(
~

i
~∇Rj
)2

+
~

i
~∇Rj ~Am,n,j (~R) + ~Am,n,j (~R)

~

i
~∇Rj +

∑

k

~Ak,m,j (~R) ~Ak,n,j (~R)

Eq. 12.13
=

(
~

i
~∇Rj
)2

+ ~Am,n,j(~R)
~

i
~∇Rj + Bm,m,j (~R) (12.14)

Comparison of this result, Eq. 12.14, with the nuclear Schrödinger equation Eq. 12.10, suggests
another form of the nuclear Schrödinger equation, namely the one given below in Eq. 12.15.
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SCHRÖDINGER EQUATION FOR THE NUCLEAR WAVE FUNCTIONS IN TERMS OF
BORN-OPPENHEIMER WAVE FUNCTIONS

i~∂tφm(~R, t) =
∑

n

[ M∑

j=1

1

2Mj

∑

k

(

δm,k
~

i
~∇Rj + ~Am,k,j (~R)

)(

δk,n
~

i
~∇Rj + ~Ak,n,j (~R)

)

+δm,nE
BO
m (~R)

]

φn(~R, t) (12.15)

or, combining the components of the nuclear wave fuctions in a vector-matrix notation – denoting
vectors by arrows and matrices by bold-face symbols –

i~∂t ~φ(~R, t) =

[ M∑

j=1

1

2Mj

(

111 ~̂Pj + ~Aj(~R)

)2

+ EBO(~R)

]

~φ(~R, t) (12.16)

where EBO denotes the diagonal matrix with the Born-Oppenheimer energies as diagonal elements

and ~̂Pj = ~

i
~∇Rj is the momentum operator of the j-th nucleus. The first-derivative couplings ~Am,k,j (~R)

are defined in Eq. 12.11.

~Am,n,j (~R)
Eq. 12.11
:= 〈ΨBOm (~R)|

~

i
~∇Rj |ΨBOn (~R)〉 = 〈ΨBOm (~R)| ~̂Pj |ΨBOn (~R)〉 (12.17)

The first-derivative couplings act similar to a vector potential in electrostatics.

We have not introduced any approximations to bring Eq. 12.16 into the new form given by
Eq. 12.9. That is we are still on solid grounds.

12.2 Born-Oppenheimer approximation

The Born-Oppenheimer approximation amounts to ignoring the derivative couplings in Eq. 12.15

BORN-OPPENHEIMER APPROXIMATION FOR THE NUCLEAR WAVE FUNCTION

i~∂tφn(~R, t) =

[
M∑

i=1

−~2
2Mi

~∇2Ri + E
BO
n (~R)

]

φn(~R, t) (12.18)

This equation describes nuclei that move on a given total energy surface EBOn (~R), which is called
the Born-Oppenheimer surface. The Born-Oppenheimer surface may be an excited-state surface or
the ground-state surface. The wave function may also have contributions simultaneously on different
total energy surfaces. However, within the Born-Oppenheimer approximation, the contributions on
different surfaces do not influence each other.

In other words, the system is with probability Pn =
∫
d3MR φ∗n(~R)φn(~R) on the excited state

surface En(~R).
The neglect of the non-adiabatic effects is the essence of the Born-Oppenheimer approximation.

In the absence of the non-adiabatic effects, we could start the system in a particular eigenstate of
the Born-Oppenheimer Hamiltonian, and the system would always evolve on the same total energy
surface EBOn (~R). Thus, if we start the system in the electronic ground state, it will remain exactly
in the instantaneous electronic ground state, while the nuclei are moving. Band crossings are the
exceptions: Here the Born-Oppenheimer approximation does not give a unique answer.
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The separation of nuclear and electronic degrees of freedom have already been in use before the
original Born-Oppenheimer approximation[140]. Born and Oppenheimer [137] gave a justification for
neglecting the non-adiabatic effects.

There is another approximation, the so-called adiabatic approximation, which goes beyond the
Born-Oppenheimer approximation and includes all terms that do not connect different components
of the nuclear wave function with each other. We will not discuss this approximation further.

12.3 Classical approximation

12.3.1 Classical approximation in the Born-Oppenheimer approximation

The most simple approach to the classical approximation is to take the Hamilton operator in the
Born-Oppenheimer approximation from Eq. 12.18, constrain it to a particular total energy surface
specified by n, and form the corresponding Hamilton function.

Hn(~P , ~R) =
∑

j

~P 2j
2Mj

+ EBOn (~R)

The Hamilton function defines the classical Hamilton equations of motion

∂t ~Rj = ~∇PjHn(~P , ~R, t) =
1

Mj

~Pj

∂t ~Pj = −~∇RjHn(~P , ~R, t) = −~∇RjEBOn (~R)

This in turn leads to the Newton’s equations of motion for the nuclei

Mj∂
2
t
~Rj = −~∇RjEBOn (~R)

This is the approximation that is most widely used to study the dynamics of the atoms. A
simulation of classical atoms using some kind of parameterized Born-Oppenheimer surface is called
molecular dynamics simulation.

The Born-Oppenheimer surface EBOn (~R) acts just like a total energy surface for the motion of
the nuclei. Once EBOn (~R) is known, the electrons are taken completely out of the picture. Within
the Born-Oppenheimer approximation, no transitions between the ground-state and the excited-state
surface take place. This implies not only that a system in the electronic ground state remains in
the ground state. It also implies that a system in the excited state will remain there for ever.
Transitions between different sheets EBOn (~R) of the Born-Oppenheimer energy are only possible
when non-adiabatic effects are included.

12.4 Nonadiabatic correction

This section is under construction! proceed to the classical approximation...

12.4.1 Derivative couplings

In the appendix F.1 on p 191, we rewrite the off-diagonal elements of the first-derivative couplings
in Eq. F.5 in the form

~Am,n,j
Eq. F.5
=

〈

ΨBOm

∣
∣
∣

[
~̂Pj , Ĥ

BO(~R)
]

−

∣
∣
∣ΨBOn

〉

EBOn (~R)− EBOm (~R)
for EBOm 6= EBOn
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where P̂j = ~

i
~∇Rj is the momentum operator for the j-th nucleus. ĤBO(~R) is a Hamiltonian acting

on the electronic degrees of freedom.
This expression makes it evident that non-adiabatic effects are not neglegible when two Born-

Oppenheimer surfaces become degenerate.

12.4.2 Crossing of Born-Oppenheimer surfaces

The non-adiabatic effects become important when the different Born-Oppenheimer surfaces come
close or even cross. Let as therefore inspect what happens at a crossing of two Born-Oppenheimer
surfaces. We will see that the character of the wave function changes suddenly, as one passes through
a crossing, but remains on the same Born-Oppenheimer surface. As a result, there non-adiabatic term
suddenly increases, which induces transitions between the different sheets of the Born-Oppenheimer
surface.

If the Born-Oppenheimer surfaces cross, this crossing can be changed into an avoided crossing.
What is an avoided crossing? Let us start with a position-dependent Hamiltonian for a one-

dimensional nuclear coordinate R, for which the energy levels cross for a certain position R0 = 0. In
addition we add non-diagonal terms ∆ to the Hamiltonian in order to explore the role of the coupling
terms.

H =

(

E0 + aR ∆

∆ E0 − aR

)

We obtain the eigenvalues as

E± = E0 ±
√

a2R2 − ∆2

The case ∆ = 0 describes the situation in the Born-Oppenheimer approximation. Here the two energy
levels touch. A nonzero value of ∆ describes the situation with adiabatic effects. Here the energy
levels are split by 2∆. Thus at the crossing, the off-diagonal term has an qualitative effect, while
farther away from the crossing the effect of ∆ is minor.

R

E

2∆

If a system starts on the excited state surface, such as an molecule in a photochemical reaction,
it will be able to drop from the excited state surface only, if it can get rid of the energy 2∆, by
creating another excitation such as a vibration or a photon. The smaller the band gap at the avoided
crossing, the more likely is it that the molecule falls into the ground state.

12.4.3 Landau-Zener Formula

not finished!!!

The transition between two adiabatic total energy surfaces has been analyzed by Landau and
Zener1 [142, ?, 141]. for a one-dimensional model. Here we follow the analysis of Wittig[141].

1According to Wittig[141] the result of Landau[?] has an error of 2π
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The model of Landau and Zener considers two crossing Born-Openheimer surfaces in only one
dimension X.

HBO(X) =

(

−F1X 0

0 −F2X

)

The Born-Oppenheimer surfaces are assumed to depend linearly on the atomic coordinate X.
The non-adiabatic effects are approximated by non-diagonal elements of the Hamiltonian, that

are considered independent of the atomix position. Thus the full Hamiltonian has the form

H(X) =

(

−F1X H12

H∗12 −F2X

)

The nuclear dynamics is considered classical, and with a constant velocity ∂tX(t) = V , that
is X(t) = V t. This turns the position-dependent Hamiltonian into an effectively time-dependent
Hamiltonian.

H(t) =

(

−F1V t H12

H∗12 −F2V t

)

The time dependent electronic Hamiltonian is described by the following Ansatz
(

Φ1

Φ2

)

=

(

A(t)e−
i
~

∫
dt EBO1 (X(t))

B(t)e−
i
~

∫
dt EBO2 (X(t))

)

=

(

A(t)e+
i
~

∫
dt F1V t

B(t)e+
i
~

∫
dt F2V t

)

=

(

A(t)e+
i
~

F1V

2
t2

B(t)e+
i
~

F2V

2
t2

)

The lower bount of the time integral has been ignored because they are a multiplicative factor, that
can be absorbed in the initial conditions.

Insertion into the time dependent Schrödinger equation yield

i~∂t

(

A(t)eiF1V t
2/(2~)

B(t)eiF2V t
2/(2~)

)

=

(

−F1V t H12

H∗12 −F2V t

)(

A(t)eiF1V t
2/(2~)

B(t)eiF2V t
2/(2~)

)

(

∂tA(t)

∂tB(t)

)

=

(

− i
~
H12B(t)e

i(F2−F1)V t2/(2~)

− i
~
H∗12A(t)e

−i(F2−F1)V t2/(2~)

)

thus

∂tA(t) = −
i

~
H12B(t)e

i(F2−F1)V t2/(2~)

∂tB(t) = −
i

~
H∗12A(t)e

−i(F2−F1)V t2/(2~) ⇒ A(t) = −~
i

H12
|H12|2
︸ ︷︷ ︸

1/H∗12

ei(F2−F1)V t
2/(2~)∂tB(t)

Insertion of the second equation into the first yields a differential equation for B(t).

∂t

(

−~
i

H12
|H12|2

ei(F2−F1)V t
2/(2~)∂tB(t)

)

︸ ︷︷ ︸

A(t)

= − i
~
H12B(t)e

i(F2−F1)V t2/(2~)

− H12
|H12|2

(F2 − F1)V tei(F2−F1)V t
2/(2~)∂tB(t) +

(

−~
i

H12
|H12|2

ei(F2−F1)V t
2/(2~)∂2tB(t)

)

= − i
~
H12B(t)e

i
(F2−F1)V
2~

t2

− 1

|H12|2
(F2 − F1)V t∂tB(t) +

(

−~
i

1

|H12|2
∂2tB(t)

)

= − i
~
B(t)

i

~
(F2 − F1)V t ∂tB(t) + ∂2tB(t) = −

1

~2
|H12|2B(t)

∂2t B(t) +
i

~
(F2 − F1)V t ∂tB(t) +

1

~2
|H12|2B(t) = 0
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Thus we have a differential equation for the probability amplitude on the second sheet. We now
look for a solution of this differential equation, resopectively its value B(t = +∞) with the initial
condition B(−∞) = ∂tB(−∞) = 0.

This is a differential equation of the form

ẍ + iαt ẋ + βx = 0

So far, the derivation is standard. Wittig showed a solution to the problem using contour integrals.

1

t

ẍ

x
+ iα

ẋ

x
+
β

t
= 0

iα

∫ Bf

Bi

dB
1

B
= −β

∫ tf

ti

dt
1

t
−
∫ tf

ti

dt
1

t

ẍ

x

iα ln[
Bf

Bi
] = −β

∫ ∞

−∞
dt
1

t
−
∫ ∞

−∞
dt
1

t

ẍ

x

The integral of the first term on the right hand side yields

∫ ∞

−∞
dt
1

t
= ±iπ

depending on whether the integration is performed in the upper or lower half plane.
Thus we obtain

ln[xf ] = ln[xi ]∓ π
β

α
+
i

α

∫ ∞

−∞
dt
1

t

ẍ

x

xf = xie
πβ/α exp

(
i

α

∫ ∞

−∞
dt
1

t

ẍ

x

)

The rest of the derivation should go on here...

LANDAU ZENER ESTIMATE FOR THE TRANSITION PROBABILITY AT A BAND CROSSING

The transition probability is (Eq. 16 of Wittig)

P = exp






2π

|H12|
~

︸ ︷︷ ︸

Rabi frequency

|H12|
V |F1 − F2|
︸ ︷︷ ︸

τ







τ is of order of the time it takes to cross the region where the Born-Oppenheimer surfaces are closer
than the avoided crossing surface.

================================
The result of their analysis is the Landau-Zener formula, which gives the probability for a

transition for a one-dimensional model

P = e−2πω12τ with ω12 =
H12
~

and τ =
|H12|

v |F1 − F2|
(12.19)

where v is the velocity and H12 is the coupling between the two crossing total energy surfaces. ω12
is the Rabi frequency at the crossing point andτ is a measure for the duration of the interaction
between the surfaces. The model hamiltonian underlying the Landau Zener formula has the form
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12.4.4 Phase relations

For a good introduction on the subject of conical intersections and the geometric phase see the
article of Child[143].

When we determine the adiabatic or Born-Oppenheimer states, we only have to fulfill an eigenvalue
equation. An eigenvalue equation determines the states only up to a unitary transformation. One
such unitary transformation is the multiplication of a phase factor eiφ to any of the states. Another
is the interchange of two states. This unitary transformation can be choosen independently for each
atomic configuration ~R.

Such a unitary transformation by a position dependent unitary matrix U(~R),

Φ′j (~x, ~R) =
∑

m

Φm(~x, ~R)Um,j(~R)

φ′j(~R, t) =
∑

n

φn(~R, t)Un,j (~R) ,

leaves the final wave function intact, if we similarly transform the nuclear wave function. This is
shown as follows:

Φ(~x, ~R, t) =
∑

n

Ψn(~x, ~R)φn(~R, t) =
∑

m,n

Ψm(~x, ~R)

(
∑

j

Um,jU
†
j,n

)

︸ ︷︷ ︸

δm,n

φn(~R, t)

=
∑

j

(
∑

m

Ψm(~x, ~R)Um,j

)(
∑

n

φn(~R, t)Un,j

)

=
∑

j

Ψ′j(~x, ~R)φ
′
j (~R, t)

While the nuclear wave function φn(~R, t) is completely changed by the transformation, it still
obeys the same differential equation in the adiabatic or the Born-Oppenheimer approximation.

This apparent paradox is resolved by taking the non-adiabatic effects into account. The term
~Bm,n,j depends strongly on this position dependent unitary matrix. Taking this into account the
differential equation changes, so that the entire description becomes invariant with respect to the
unitary approximation.

This provides us with an additional requirement for the Born-Oppenheimer approximation. We
need to fix the unitary transformation for the Born-Oppenheimer states such that the term ~Am,n,j is
as small as possible. Thus we should choose the Born-Oppenheimer states such that they change as
little as possible from one atomic configuration to the next. However, also this choice is not unique.

It can be shown that in certain situations, it is not even possible to select a set of Born-
Oppenheimer wave functions, that is continuous in configuration space. This leads to the so-called
geometrical phase or called Berry phase.[144] (For the role of the Berry phase in chemical reactions
see D.C. Clary, Science 309, 1195 (2005))

Here, a few reviews related to non-adiabatic effects[145]. Interesting is also the PhD thesis of
Florian Dufey[140]. I have not read them carefully yet. A good introduction is the special volume of
the Journal “Advances in Chemical Physics” from 2002[146].
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QM2-Figs/photochemistry2.eps

Fig. 12.1: Schematics of a photochemical reaction. An optical excitation raises the system from the
ground-state total energy sheet to the excited state total energy surface. At a conical intersection
the system can change to the lower sheet. At this point, non-adiabatic effects are important. (From
a lecture “Molecular dynamics” by John Tully, Park City 2005 )

vibrational levelsE

Born−Oppenheimer surfaces

R

E

Born−Oppenheimer surfaces

R

E

Fig. 12.2: Schematic for the optical absorption and desorption of a photon. Let R be one spatial
coordinate for the nuclei, such as a bond distance. A photon excites an electron from the ground
state sheet of the total energy surface to an excited state sheet. The atoms vibrate around the
equilibrium structure of the excited energy surface. During that process the system dissipates energy.
In other words, it thermalizes by emitting phonons. At some point the electron drops again on the
ground state energy surface, while emitting a photon. The emmitted photon has a lower energy than
the absorbed phioton, because some of the energy has been lost by creating for example phonos, i.e.
heat. The system vibrates again about the equilibrium structure until it has dissipated its energy.
Note that the transition proceeds between different energy levels of the total energy, which also
include the vibrational levels. Thus vibrations or phonons are excited as well. Thus to determine
the absorption probability not only the optical transition matrix elements of the electronic subsystem
must be considered, but also the overlap of the nuclear part of the wave function. Note that the
figure describes the case at zero temperature. At finite temperature, the system can be initially
already in a excited vibrational level. The left figure is appropriate for a classical description of the
nuclear motion, while the right figure is an abstract energy level diagram appropriate for a quantum
description.
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Appendix A

Notation for spin indices

We use a notation that combines the continuous spatial indices ~r with the discrete spin indices into
a four dimensional vector ~x . This shortcut notation has a more rigorous basis[147], which we will
show here.

We introduce an artificial spin coordinate q. This is not a spatial coordinate, but it is a coordinate
in some other abstract one-dimensional space. On this space, we assume that there is a complete1

and orthonormal basis with only two functions, namely α(q) and β(q). They obey
∫

dq α∗(q)α(q) = 1
∫

dq β∗(q)β(q) = 1
∫

dq α∗(q)β(q) = 0

A wave function may now depend on a spatial coordinate and this fictitious spin variable q. They
form together a four dimensional vector

~x
def
=(~r , q)

An electronic wave function depends on all these variables:

〈~x |ψ〉 = 〈~r , q|ψ〉 = ψ(~r , q)

We can now decompose this vector into its components

ψ(~r , ↑) def
=

∫

dq α∗(q)ψ(~r , q)

ψ(~r , ↓) def
=

∫

dq β∗(q)ψ(~r , q)

1This is where the argument is weak: a complete set of functions on a finite interval is always infinite. Probably
one needs Grassman variables
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Appendix B

Time-inversion symmetry

Time inversion symmetry says that it is not possible from a conservative classical trajectory to find
out if it time is running forward or backward in time. If take a physical trajectory and let the time
run backwards, it still fulfills the equations of motion.

Electrodynamics and gravitation obey time inversion symmetry exactly. Time inversion alone
is however not a fundamental symmetry of nature. The weak interaction, which is for example
responsible for the β decay of nuclei, violates it. Time inversion must be replaced by the weaker CPT-
inversion symmetry. This is the so-called CPT-theorem posed by Wolfgang Pauli. The CPT theorem
says that the fundamental laws of nature must obey a symmetry under simultaneous application of
three operations:

• charge inversion (C)

• space inversion (P for Parity)

• time inversion (T)

The CPT theorem is based on the assumptions of Lorentz invariance, causality, locality and the
existence of a Hamilton operator that is bounded by below. Electrodynamics and gravitation are
symmetric under the three symmetry operations individually.

As we are not concerned with weak interactions we can assume exact time inversion symmetry.

B.1 Schrödinger equation

Let us now investigate what time inversion symmetry implies in quantum mechanics:
Let us consider the Schrödinger equation in a magnetic field

i~∂tΨ(~r , t) =

[

( ~i
~∇− q ~A)2
2m

+ qΦ

]

Ψ(~r , t) (B.1)

Let us take the complex conjugate of the Eq. B.1

−i~∂tΨ∗(~r , t) =
[

(− ~i ~∇− q ~A)2
2m

+ qΦ

]

Ψ∗(~r , t) =

[

( ~i
~∇+ q ~A)2
2m

+ qΦ

]

Ψ∗(~r , t) (B.2)

Next we look for the equation obeyed by ψ(~r ,−t), if Eq. B.2 holds

i~∂tΨ
∗(~r ,−t) =

[

( ~i
~∇+ q ~A(~r ,−t))2

2m
+ qΦ(~r ,−t)

]

Ψ∗(~r ,−t) (B.3)
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One can see immediately that Eq. B.3 is identical to Eq. B.1 if we revert the sign of the vector
potential ~A, when we invert the time. Thus the Schrödinger equation is symmetriuc under the time
inversion symmetry as stated below:

TIME-INVERSION

~A(~r , t) → − ~A(~r ,−t)
Φ(~r , t) → Φ(~r ,−t)
Ψ(~r , t) → Ψ∗(~r ,−t)

For the time-independent Schrödinger equation we obtain

Ψ(~r , t) = Ψǫ(~r)e
− i
~
ǫt

so that

Ψ∗(~r ,−t) = Ψ∗ǫ(~r )e−
i
~
ǫt

Thus, the time inversion symmetry applied to energy eigenstates has the effect that the wave function
is turned into its complex conjugate.

Let us look at the problem from stationary Schrödinger equation.
[

( ~i
~∇− q ~A)2
2m

+ qΦ− ǫ
]

Ψǫ(~r) = 0

We take the complex conjugate of this equation
[

( ~i
~∇+ q ~A)2
2m

+ qΦ− ǫ
]

Ψ∗ǫ(~r) = 0

Thus, we see that the complex conjugate of the wave function solves the same Schrödinger equation
with the magnetic field reversed. If there is no magnetic field, the complex conjugate is also a
solution of the original wave function. Thus, we can superimpose the two solutions to obtain two
real solutions, namely the real part and the imaginary part. Thus, in the absence of a magnetic field
the wave functions can be assumed to be purely real.

B.2 Pauli equation

The proper theory of electrons is the Dirac equation, which describes electrons by a four component
spinor, that describes spin up and spin-down electrons as well as their antiparticles, the positrons. In
the non-relativistic limit electrons and positrons become independent. Now electrons and positrons
obey the so-called Pauli equation.

The Pauli equation has the form

i~∂t |ψ(t)〉 =
[

(~p − q ~A)2
2m0

+ qΦ− q

m0
~̂S ~B

]

|ψ〉 (B.4)

The wave function is now a two-component spinor with a spin-up and a spin-down component. The
spin-operator is represented by the Pauli matrices

~S
Eq. 7.1
=
~

2
(σ̂x , σ̂y , σ̂z )
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The Pauli matrices are given in Eq. 7.2 on 90. The magnetic field is related to the vector potential
via ~B = ~∇× ~A.

Expressed with explicit spinor components, the Pauli equation has the form

i~∂tψ(~r , σ, t) =
∑

σ′









(

( ~i
~∇− q ~A)2
2m0

+ qΦ

)

δσ,σ′

︸ ︷︷ ︸

Ĥ0

− q

m0
~B~Sσ,σ′









ψ(~r , σ′, t) (B.5)

We proceed as we did for the Schrödinger equation by taking the complex conjugate of the Pauli
equation Eq. B.5

−i~∂tψ∗(~r , σ, t) =
∑

σ

[(

(− ~i ~∇− q ~A)2
2m0

+ qΦ

)

δσ,σ′ −
q

m0
~B~S∗σ,σ′

]

ψ∗(~r , σ′, t) (B.6)

Now we revert the time argument in Eq. B.6 and perform the transformation of the potentials
~A′(~r , t) = −~A′(~r ,−t) and Φ′(~r , t) = Φ′(~r ,−t):

i~∂tψ
∗(~r , σ,−t) =

∑

σ′










(

( ~i
~∇− q ~A′(~r , t))2
2m0

+ qΦ′(~r , t)

)

δσ,σ′

︸ ︷︷ ︸

Ĥ′0

+
q

m0
~B′(~r , t)~S∗σ,σ′










ψ∗(~r , σ′,−t)

(B.7)

We observe that it is no more sufficient to replace the wave function by its complex conjugate of the
time-reverted function as in the Schrödinger equation.

In order to find the transformation of the wave functions let us rewrite the equation in components.
The original equation Eq. B.5 written in components looks like

(

(i~∂t − Ĥ0)ψ(~r , ↑, t)
(i~∂t − Ĥ0)ψ(~r , ↓, t)

)

Eq. B.5
= − ~q

2m0

(

Bz Bx − iBy
Bx + iBy −Bz

)(

ψ(~r , ↑, t)
ψ(~r , ↓, t)

)

(B.8)

which is the original Pauli equation Eq. B.5, with the symbols replaced by the primed, that is the
transformed, variables.

So far we arrived at Eq. B.7, which in component notation, looks like
(

(i~∂t − Ĥ′0)ψ∗(~r , ↑,−t)
(i~∂t − Ĥ′0)ψ∗(~r , ↓,−t)

)

Eq. B.7
= − ~q

2m0

(

−B′z −B′x − iB′y
−B′x + iB′y B′z

)(

ψ∗(~r , ↑,−t)
ψ∗(~r , ↓,−t)

)

︸ ︷︷ ︸

+ q
m0
~B~S∗

(B.9)

In order to get an idea on how to proceed let us consider the special case B′x = B
′
y = 0. In this case

the diagonal elements of the equation could be brought into the form of Eq. B.8 by interchanging
the spin indices of the wave functions. Interchanging the spin indices of Eq. B.9 yields

(

(i~∂t − Ĥ′)ψ∗(~r , ↓,−t)
(i~∂t − Ĥ′)ψ∗(~r , ↑,−t)

)

= − ~q
2m0

(

B′z −B′x + iB′y
−B′x − iB′y −B′z

)(

ψ∗(~r , ↓,−t)
ψ∗(~r , ↑,−t)

)

However, the off-diagonal elements of the equation would still differ by the sign. This problem can
be remedied by flipping the sign of one of the wave function components.

(

(i~∂t − Ĥ′)[−ψ∗(~r , ↓,−t)]
(i~∂t − Ĥ′)ψ∗(~r , ↑,−t)

)

= − ~q
2m0

(

B′z B′x − iB′y
B′x + iB

′
y −B′z

)(

[−ψ∗(~r , ↓,−t)]
ψ∗(~r , ↑,−t)

)
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which leads to the desired form Eq. B.8.
The time inversion for two-component spinors and electromagnetic fields is therefore

TIME-INVERSION FOR TWO-COMPONENT SPINORS

ψ′(~r , ↑, t) = −ψ∗(~r , ↓,−t)
ψ′(~r , ↓, t) = +ψ∗(~r , ↑,−t)

~A′(~r , t) = − ~A(~r ,−t)
Φ′(~r , t) = Φ(~r ,−t)

If we investigate the resulting transformation of the spin expectation values, we see that the spin
is inverted. This is expected under time inversion symmetry, if we interpret the spin as a angular
momentum. If we invert the time, the particle is spinning in the opposite direction.



Appendix C

Slater determinants for parallel and
antiparallel spins

Why can spin-up and spin-down electrons be treated as non-identical particle, even through they are
only spinor-components of identical particles.

Here we try to give an answer by showing that a one-particle orbitals can be occupied independently
of each other with one spin-up and one spin-down electron. That is for each placement of the two
electrons into one-particle orbitals there is a Slater determinant. For two spin-up electrons or for two
spin-down electrons, the same one-particle orbital can only be occupied once.

This implies that the statistics of spin up and spin-down electrons is such that spin up electrons
are treated as a class of identical particles and spin-down electrons are treated as a different class of
independent particles.

Let us consider two spatial one-particle orbitals χa(~r) and χb(~r). The two orbitals shall be
orthonormal. Out of these two orbitals, we construct four spin orbitals, namely

φa↑(~r , σ) = χa(~r)δσ,↑

φa↓(~r , σ) = χa(~r)δσ,↓

φb↑(~r , σ) = χb(~r)δσ,↑

φb↓(~r , σ) = χb(~r)δσ,↓

or using α ∈ {a, b} and s ∈ {↑, ↓}.

φα,s(~r , σ) = χα(~r)δs,σ

Out of these one-particle spin orbitals, we construct the Slater determinants

Φα,β,s,s ′(~r , σ, ~r ′, σ
′) =

1√
2

(

φα,s(~r , σ)φβ,s ′(~r ′, σ
′)− φβ,s ′(~r , σ)φα,s(~r ′, σ′)

)

=
1√
2

(

χα(~r)χβ(~r ′)δs,σδs ′,σ′ − χβ(~r)χα(~r ′)δs,σ′δs ′,σ
)

Some of these Slater determinants are zero states, but that does not matter at the moment.
These Slater determinants are products of a spatial two-particle wave function and a two-particle

wave function in the spin space. It will be convenient to introduce such two particle states that are
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symmetric and antisymmetric under particle exchange. (Exchange of the arguments.) These are

Ψ+α,β(~r ,
~r ′)

def
=
1√
2

(

χα(~r)χβ(~r ′) + χβ(~r)χα(~r ′)
)

Ψ−α,β(~r , ~r
′)

def
=
1√
2

(

χα(~r)χβ(~r ′)− χβ(~r)χα(~r ′)
)

G+s,s ′(σ, σ
′)

def
=
1√
2

(

δs,σδs ′,σ′ + δs ′,σ′δs,σ

)

G−s,s ′(σ, σ
′)

def
=
1√
2

(

δs,σδs ′,σ′ − δs ′,σ′δs,σ
)

The Slater determinants have the form

Φα,β,s,s ′(~r , σ, ~r ′, σ
′) =

1√
2

[
1

2

(

Ψ+α,β +Ψ
−
α,β

)(

G+s,s ′ + G
−
s,s ′

)

− 1
2

(

Ψ+α,β −Ψ−α,β
)(

G+s,s ′ − G−s,s ′
)]

=
1√
2

[

Ψ+α,β(~r ,
~r ′)G−s,s ′(σ, σ

′) + Ψ−α,β(~r , ~r
′)G+s,s ′(σ, σ

′)
]

(C.1)

Now we can analyze the result using

G−s,s ′(σ, σ
′) ≡ 0 for s = s ′

Ψ−α,β(~r , ~r
′) ≡ 0 for α = β

Let us now consider two spin up electrons. Because of Eq. C.1 and G−↑,↑ = 0, there is only a
single non-zero Slater determinant, namely

|Φa,b,↑,↑〉 = Ψ−a,b
(
1√
2
G+s,s ′

)

The Slater-determinant |Φb,a,↑,↑〉 differs from |Φa,b,↑,↑〉 only by a sign change. Thus we see that
the spatial wave function is antisymmetric. Hence, the Pauli principle exists in the spatial coordinates.

To show the difference let us investigate the states with different spin.

|Φa,a,↑,↓〉 =
( 1√
2
Ψ+a,a

)

G−↑,↓

|Φa,b,↑,↓〉 =
1√
2

(

Ψ+a,bG
−
↑,↓ +Ψ

−
a,bG

+
↑,↓

)

|Φb,a,↑,↓〉 =
1√
2

(

Ψ+a,bG
−
↑,↓ −Ψ−a,bG+↑,↓

)

|Φb,b,↑,↓〉 =
( 1√
2
Ψ+b,b

)

G−↑,↓

We see that the two electrons with different spin can be placed without restriction into the two
spatial one-particle orbitals.

This indicates that electrons that the statistics of electrons with different spin is identical to that
of two non-identical particles. The statistics of electrons with like spin is like identical particles.

C.0.1 Spatial symmetry for parallel and antiparallel spins

Here we show that

• the spatial wave functions for two electrons with parallel spin is antisymmetric

• the spatial wave functions for two electrons with anti-parallel spin is symmetric
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under exchange of the coordinates.
A common misconception is that the Slater determinant of two one-particle spin-orbitals with

opposite spin describes two electrons with anti-parallel spin. For such a state the z-component of
the spin vanishes, but it is a superposition of a two states with Sz = 0, namely one with antiparallel
spin and the other with parallel spin with a total spin lying in the xy-plane.

In order to determine states with parallel and antiparallel spin, we need to determine the spin

eigenstates and eigenvalues. If the eigenvalue for Ŝ2tot = ( ~̂S1 + ~̂S2)
2 vanishes, the wave function has

antiparallel spin. If the eigenvalue is 2~2 the spins are parallel.
Using the ladder operators Ŝ± we write the total spin as

Ŝ2tot = ( ~̂S1 + ~̂S2)
2

= ~̂S21 + ~̂S
2
2 + 2 ~̂S1 ~̂S2

= ~̂S21 + ~̂S
2
2 + 2

[1

2
Ŝ1,+Ŝ2,− +

1

2
Ŝ1,−Ŝ2,+ + Ŝ1,z Ŝ2,z

]

= ~̂S21 + ~̂S
2
2 + Ŝ1,+Ŝ2,− + Ŝ1,−Ŝ2,+ + 2Ŝ1,z Ŝ2,z

]

The ladder operators are defined as

Ŝ+ = Ŝx + i Ŝy

Ŝ− = Ŝx − i Ŝy
and obey

Ŝ−| ↑〉 = | ↓〉~ and Ŝ−| ↓〉 = |∅〉
Ŝ+| ↑〉 = |∅〉 and Ŝ+| ↓〉 = | ↑〉~

Thus
(

Ŝ1+Ŝ2− + Ŝ1−Ŝ2+
)

|G±↑,↓〉 =
(

Ŝ1+Ŝ2− + Ŝ1−Ŝ2+
) 1√
2

(

| ↑, ↓〉 ± | ↓, ↑〉
)

=
1√
2

(

| ↓, ↑〉 ± | ↑, ↓〉
)

~
2

= |G±↑,↓〉
(

±~2
)

(

Ŝ1+Ŝ2− + Ŝ1−Ŝ2+
)

|G±↑,↑〉 = |∅〉
(

Ŝ1+Ŝ2− + Ŝ1−Ŝ2+
)

|G±↓,↓〉 = |∅〉

Ŝ1,z Ŝ2,z |G±↑,↓〉 = |G±↑,↓〉
(

−~
2

4
)

Ŝ1,z Ŝ2,z |G±↑,↑〉 = |G±↑,↑〉
(

+
~2

4
)

Ŝ1,z Ŝ2,z |G±↓,↓〉 = |G±↓,↓〉
(

+
~2

4
)

~̂S2i |G±s,s ′〉 = |G±s,s ′〉
3~2

4

Ŝ2tot |G±↑,↓〉 = |G±↑,↓〉
[
3~2

4
+
3~2

4
± ~2 − ~

2

2

]

= |G±↑,↓〉(1± 1)~2

Ŝ2tot |G±↑,↑〉 = |G±↑,↑〉
[
3~2

4
+
3~2

4
+
~2

2

]

= |G±↑,↑〉2~2

Ŝ2tot |G±↓,↓〉 = |G±↓,↓〉
[
3~2

4
+
3~2

4
+
~2

2

]

= |G±↓,↓〉2~2
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Thus we see that |G+↑,↓〉, |G+↑,↑〉 and |G+↓,↓〉 describe two electrons with parallel spin. Note that
|G−s,s ′〉 vanishes for parallel spin.

The only solution with antiparallel spin is |G−↑,↓〉.
From Eq. C.1 we know that the antisymmetric spin wave function is always combined with the

symmetric spatial orbital and vice versa. Hence, the wave functions describing two electrons with
anti-parallel spin are symmetric in their spatial coordinates, while the ones with parallel spin have an
antisymmetric spatial wave function.

C.0.2 An intuitive analogy for particle with spin

Consider balls that are painted on the one side green and on the other side red.
If we place two such balls on a table with the green side up, turn around and look at them again,

we cannot tell if the two balls habe been interchanged.
No we place them with opposite colors up. If we only allow that the positions of the two balls are

interchanged, but exclude that they are turned around, we can tell the two spheres apart from their
orientation. Hence we can treat them as non-identical spheres.

However, if we consider exchanges of position and orientation, we are again unable to tell, whether
the spheres have been interchanged or not.

Thus, if we can exclude that the spins of the particles –or the orientation of our spheres– change,
we can divide electrons into two classes of particles, namely spin-up and spin-down electrons. Particles
within each class are undistingishable, but spin-up and spin-down electrons can be distinguished. When
the spin is preserved, the Hamiltonian is invariant with respect to spin-rotation, and spin is a good
quantum number.

However, if there is a magnetic field, which can cause a rotation of the spin direction, the division
into spin-up and spin-down particles is no more a useful concept. In our model, if the orientation of
the spheres can change with time, we cannot use it as distinguishing feature.



Appendix D

Hartree-Fock of the free-electron gas

Here, we derive the changes in the dispersion relation ǫ(~k) of the free-electron gas due to the exchange
potential discussed in section 9.6 on p. 114.

Because of the translational symmetry, we can assume that the charge density is spatially con-
stant.1 Since the problem is translationally invariant, we can furthermore deduce that the eigenstates
are plane waves.

D.1 Exchange potential as non-local potential

Let us evaluate the non-local potential as defined in Eq. 9.17 using plane waves as defined in Eq. 4.1
as basis functions.

Vx(~x, ~x ′)
Eq. 9.17
= −




∑

j

e2φ∗j (~x)φj(~x
′)

4πǫ0|~r − ~r ′|





Eq. 4.1
=

−e2
4πǫ0Ω








∑

~k

θ(kF − |~k|)

1
︷ ︸︸ ︷

(2π)3

Ω
︸ ︷︷ ︸

→d3k

Ω

(2π)3
ei
~k(~r ′−~r)δσ,σ′

|~r − ~r ′|








=
−e2

4πǫ0|~r − ~r ′|
δσ,σ′

(2π)3

∫

d3k θ(kF − |~k |)ei~k(~r
′−~r) (D.1)

We see that the integral is isotropic in ~r ′ − ~r . Thus, we can assume, without loss of generality,
that the distance vector points in z-direction, that is ~r ′ − ~r = ~ezs.
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1We assume here that there is no symmetry breaking, which is not guaranteed.
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∫

~k≤kF
d3k eikz s =

∫ kF

−kF
dkze

ikzs

∫

k2x+k
2
y<k

2
F−k2z

dkxdky

︸ ︷︷ ︸

π(k2F−k2z )

=

∫ kF

−kF
dkz

(
π(k2F − k2z )

)
eikzs

= πk2F

∫ kF

−kF
dkz e

ikzs − π
∫ kF

−kF
dkz k

2
z e
ikz s

= πk2F

∫ kF

−kF
dkz e

ikzs + π
d2

ds2

∫ kF

−kF
dkz e

ikzs

= π

[

k2F +
d2

ds2

] [
1

i s
eikzs

]kF

−kF

= π

[

k2F +
d2

ds2

]
eikF s − e−ikF s

i s

= 2πk3F

[

1 +
d2

d(kF s)2

]
sin(kF s)

kF s

= 2πk3F

[(

1 +
d2

dx2

)
sin(x)

x

]

x=kF s

= 2πk3F

[
sin(x)

x
− sin(x)

x
− 2 cos(x)

x2
+
2 sin(x)

x3

]

x=kF s

=
4π

3
k3F

[

−3cos(kF s)
(kF s)2

+ 3
sin(kF s)

(kF s)3

]

(D.2)

Now we insert the result of the integral into the expression for the nonlocal potential.

Vx(s, σ, σ
′)
Eqs. D.1,D.2
=

−e2δσ,σ′
4πǫ0s

1

(2π)3
4πk3F

[

−cos(kF s)
(kF s)2

+
sin(kF s)

(kF s)3

]

︸ ︷︷ ︸
∫
d3k θ(kF−|~k|)ei~k(~r ′−~r )

=
e2δσ,σ′

4πǫ0s

1

(2π)3
4π

3
k3F

[

3
(kF s) cos(kF s)− sin(kF s)

(kF s)3

]

(D.3)
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Fig. D.1: The shape of the non-local exchange potential (right) for a free electron gas as calculated
in the Hartree Fock method. The dashed line corresponds to a Coulomb interaction. The function
3 x cos(x)−sin(x)x3 is shown on the left-hand side.
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D.2 Energy level shifts by the Exchange potential

Now we need to evaluate the expectation values of this potential in order to obtain the energy shifts:

dǫ~k,σ =
1

Ω

∫

d3r

∫

d3r ′ Vx(|~r − ~r ′|, σ, σ′)ei~k(~r−~r
′)

~s
def
=~r−~r ′
=

1

Ω

∫

d3r

︸ ︷︷ ︸

1

∫

d3s Vx(|~s|, σ, σ′)ei~k~s

Now we decompose the plane wave into spherical harmonics(see appendix “Distributionen, d-Funktionen
und Fourier transformationen in the text book of Messiah[148])

ei
~k~r = 4π

∞∑

ℓ=1

ℓ∑

m=−ℓ
i ℓjℓ(|~k||~r |)Y ∗ℓ,m(~k)Y ∗ℓ,m(~r)

Thus, we obtain

dǫ~k,σ =

∫

d3s Vx(|~s |, σ, σ′)4π
∞∑

ℓ=1

ℓ∑

m=−ℓ
i ℓjℓ(|~k ||~s|)Y ∗ℓ,m(~k)Y ∗ℓ,m(~s)

= 4π

∞∑

ℓ=1

ℓ∑

m=−ℓ
i ℓY ∗ℓ,m(~k)

∫

d3s Vx(|~s|, σ, σ′)jℓ(|~k ||~s|)Y ∗ℓ,m(~s)

Because the non-local potential is isotropic only the term with ℓ = 0 contributes.

dǫ~k,σ = 4π Y ∗0,0(~k)
︸ ︷︷ ︸

1√
4π

∫

d3s Vx(|~s|, σ, σ) j0(|~k ||~s|)
︸ ︷︷ ︸

j0(x)=
sin(x)

x

Y ∗0,0(~s)
︸ ︷︷ ︸

1√
4π

=

∫

d3s Vx(|~s |, σ, σ)
sin(|~k ||~s|)
|~k ||~s |

s
def
=|~s |
= 4π

∫

ds s2Vx(s, σ, σ)
sin(|~k |s)
|~k |s

=
4π

|~k |

∫

ds Vx(s, σ, σ)s sin(|~k |s)

Eq. 9.19
=

4π

|~k |

∫

ds
e2

4πǫ0s

1

(2π)2
4π

3
k3F

[

3
kF s cos(kF s)− sin(kF s)

(kF s)
3

]

s sin(|~k |s)

=
4π

|~k |
e2

4πǫ0

1

(2π)2
4π

3
k3F

∫

ds

[

3
kF s cos(kF s)− sin(kF s)

(kF s)
3

]

sin(|~k |s)

r
def
=kF s=

4π

kF |~k |
e2

4πǫ0

1

(2π)2
4π

3
k3F

∫ ∞

0

dr

[

3
r cos(r )− sin(r )

r 3

]

sin(
|~k|
kF
r )

Now we need to solve the integral

I =

∫ ∞

0

dx

[

3
x cos(x)− sin(x)

x3

]

sin(ax)

where a = |~k |/kF . The difficulty with this integral is that we cannot take the two terms apart,
because the individual parts of the integrand diverge at the origin. Thus, during the derivation, we
have to deal with divergent expressions.



184 D HARTREE-FOCK OF THE FREE-ELECTRON GAS

∂x
sin(x)

xn−1
= −(n − 1)sin(x)

xn
+
cos(x)

xn−1

⇒ sin(x)
xn

=
1

(n − 1)

[
cos(x)

xn−1
− ∂x

sin(x)

xn−1

]

(D.4)

Eq. D.4⇒
∫ ∞

0

dx
sin(x)

x3
sin(ax) =

1

2

∫ ∞

0

dx
cos(x)

x2
sin(ax)− 1

2

∫ ∞

0

dx sin(ax)∂x
sin(x)

x2

=
1

2

∫ ∞

0

dx
cos(x)

x2
sin(ax)

−1
2

[

sin(ax)
sin(x)

x2

]∞

0

+
a

2

∫ ∞

0

dx
sin(x)

x2
cos(ax)

=
a

2
+
1

2

∫ ∞

0

dx
cos(x) sin(ax) + a sin(x) cos(ax)

x2
(D.5)

Eq. D.4⇒
∫ ∞

0

dx
sin(x)

x2
cos(ax) =

∫ ∞

0

dx
cos(x)

x
cos(ax)−

∫ ∞

0

dx cos(ax)∂x
sin(x)

x

=

∫ ∞

0

dx
cos(x)

x
cos(ax)

−
[

cos(ax)
sin(x)

x

]∞

0

− a
∫ ∞

0

dx
sin(x)

x
sin(ax)

= 1 +

∫ ∞

0

dx
cos(x) cos(ax)− a sin(x) sin(ax)

x
(D.6)

Thus, we obtain

I = 3

∫ ∞

0

dx
x cos(x)− sin(x)

x3
sin(ax)

= 3

∫ ∞

0

dx
cos(x) sin(ax)

x2
− 3

∫ ∞

0

dx
sin(x) sin(ax)

x3

Eq. D.5
= 3

∫ ∞

0

dx
cos(x) sin(ax)

x2
− 3a
2
− 3
2

∫ ∞

0

dx
cos(x) sin(ax) + a sin(x) cos(ax)

x2

= −3a
2
+
3

2

∫ ∞

0

dx
cos(x) sin(ax)

x2
− 3a
2

∫ ∞

0

dx
sin(x) cos(ax)

x2

= −3a
2
+
3a

2

∫ ∞

0

dy
cos( 1a y) sin(y)

y 2
− 3a
2

∫ ∞

0

dx
sin(x) cos(ax)

x2

Eq. D.6
= −3a

2
+
3a

2

[

1 +

∫ ∞

0

dy
cos( 1ay) cos(y)− 1a sin( 1ay) sin(y)

y

]

−3a
2

[

1 +

∫ ∞

0

dx
cos(ax) cos(x)− a sin(ax) sin(x)

x

]

= −3a
2
+
3a

2

[
∫ ∞

0

dx
cos(x) cos(ax)− 1a sin(x) sin(ax)

x

]

−3a
2

[∫ ∞

0

dx
cos(ax) cos(x)− a sin(ax) sin(x)

x

]

= −3a
2
+
3a

2
(−1
a
+ a)

[∫ ∞

0

dx
sin(x) sin(ax)

x

]

= −3a
2
+
3

2
(a2 − 1)

[∫ ∞

0

dx
sin(x) sin(ax)

x

]

We recognize that the integral is the fourier transform of sin(x)x . From the Fourier transform tables
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of Bronstein[149] we take
√

2

π

∫ ∞

0

dx sin(xy)
sin(ax)

x

Bronstein
=

1√
2π
ln

∣
∣
∣
∣

y + a

y − a

∣
∣
∣
∣

a→1;y→a⇒
∫ ∞

0

dx sin(ax)
sin(x)

x
=

1

2
ln

∣
∣
∣
∣

a + 1

a − 1

∣
∣
∣
∣
=
1

2
ln

∣
∣
∣
∣

1 + a

1− a

∣
∣
∣
∣

Thus, we obtain

I = −3a
2
+
3

4
(a2 − 1) ln

∣
∣
∣
∣

1 + a

1− a

∣
∣
∣
∣

Now we are done with the Integral. We need to insert the result in the correction for the energy
eigenvalues

dǫ~k,σ =
4π

kF |~k |
e2

4πǫ0

1

(2π)2
4π

3
k3F

[

−3a
2
+
3(a2 − 1)
4

ln

∣
∣
∣
∣

a + 1

a − 1

∣
∣
∣
∣

]

=
4π

k2F

e2

4πǫ0

1

(2π)2
4π

3
k3F

[

−3
2
+
3(a2 − 1)
4a

ln

∣
∣
∣
∣

a + 1

a − 1

∣
∣
∣
∣

]

= − e2

4πǫ0

2kF
π

[
1

2
+
1− a2
4a

ln

∣
∣
∣
∣

1 + a

1− a

∣
∣
∣
∣

]

The function in parenthesis is shown in Fig. D.2 and the resulting dispersion relation is discussed in
section 9.6 on p. 114.
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Fig. D.2: The function f (a) = −
(
1
2 +

1−a2
4a ln

∣
∣ 1+a
1−a
∣
∣

)

as function of a = k/kF . Note that the slope

for k = kF is infinite. For k >> kF the function approaches zero.
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Appendix E

Slater-Condon rules

In this section we derive the Slater-Condon rules spelled out in section ??. on p. ??.
We assume that the Slater determinants are in maximum coincidence spelled out on p ?? The

principle of maximum coincidence can be used to place the one-particle orbitals that differ between
the two Slater determinants to the front. The other one-particle orbitals, which are identical in both
Slater determinants are placed in the identical position of both determinants.

E.1 Matrix elements between identical Slater determinants

The result has already been obtained when we worked out the equations for the Hartree Fock method,
where we obtained Eq. 9.6 and Eq. 9.13 on p. 106ff. They are identical to the first Slater-Condon
rule Eq. ?? given above.

E.2 Matrix element of a one-particle operator with Slater deter-

minants differing by 1 one-particle orbital

First we consider Slater determinants that differ by exactly one one-particle orbital. Due to the form
of maximum coincidence we can place these two orbitals in the first position. Hence, |ψ1〉 6= |φ1〉,
but |ψi 〉 = |φi〉 for i 6= 1. Thus, 〈ψi |φj 〉 = δi ,j(1− δi ,1).

〈Ψ|Â1|Φ〉 =
1

N!

N∑

i1,...,iN=1

N∑

j1,...,jN=1

ǫi1,i2,...,iN ǫj1,j2,...,jN

·〈ψi1 |Â|φj1〉 〈ψi2 |φj2〉
︸ ︷︷ ︸

δi2 ,j2 (1−δi2 ,1)

. . . 〈ψiN |φjN 〉
︸ ︷︷ ︸

δiN ,jN (1−δiN ,1)

=
1

N!

N∑

i1,...,iN=1

N∑

j1=1

ǫi1,i2,...,iN ǫj1,i2,...,iN

·〈ψi1 |Â|φj1〉(1− δi2,1) . . . (1− δiN ,1)

Because the Levi-Civita symbol is only non-zero if all indices differ, the product of the two Levi-Civita
symbols can only be non-zero if their first index is identical.

〈Ψ|Â1|Φ〉 =
1

N!

N∑

i1,...,iN=1

(ǫi1,i2,...,iN )
2 〈ψi1 |Â|φi1〉(1− δi2,1) . . . (1− δiN ,1)
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Furthermore the there is a contribution only if the first index i1 has the value 1. If that is not the
case there is a term (1− δi ,1) that vanishes.

〈Ψ|Â1|Φ〉 =
1

N!

N∑

i2...,iN=1

(ǫ1,i2,...,iN )
2 〈ψ1|Â|φ1〉

The Levi-Civita symbols contribute, if all indices are different, This happens (N − 1)! times, which
corresponds to the number of permutations of the indices 2, . . . , N. Thus, we obtain

〈Ψ|Â1|Φ〉 =
1

N
〈ψ1|Â|φ1〉

Since the operator has the form Â =
∑N

i=1 Âi , and since all operators Âi contribute the same
result, we obtain

〈Ψ|Â|Φ〉 = 〈ψ1|Â|φ1〉

which corresponds to the first line in the second Slater-Condon rule Eq. ??.

E.3 Matrix element of a two-particle operator with Slater de-

terminants differing by one one-particle orbital

We consider the matrix element between two Slater determinants

〈~x1, . . . , ~xN |Ψ〉 =
1√
N!

N∑

i1,...,iN=1

ǫi1,...,iN 〈~x1|ψi1〉 · · · 〈~xN |ψiN 〉

〈~x1, . . . , ~xN |Φ〉 =
1√
N!

N∑

j1,...,jN=1

ǫj1,...,jN 〈~x1|φj1〉 · · · 〈~xN |φjN 〉

with all one-particle orbitals equal, except the two first orbitals, that is

〈ψi |φj 〉 =
{

δi ,j for i , j ∈ 2, . . . , N
0 for i = 1 and/or j = 1

}

= δi ,j(1− δi ,1)

Note that we the Slater determinants are in maximum coincidence, as required, because the two
orbitals that are present in only one of the two Slater determinants stand at the same position,
namely the first. The orbitals which are identical for both Slater determinants are in the same
position.

Now we can work out the matrix element of the interaction operator Ŵ1,2 that acts exclusively
on the first two particle coordinates. Later we will see that the result is the same for each pair of
coordinates, so that the sum over pairs is done easily at the end of the calculation.

〈Ψ|Ŵ1,2|Φ〉 =
1

N!

N∑

i1,...,iN=1

N∑

j1,...,jN=1

ǫi1,i2,...,iNǫj1,j2,...,jN

·〈ψi1ψi2 |Ŵ1,2|φj1φj2〉 〈ψi3 |φj3〉
︸ ︷︷ ︸

δi3 ,j3 (1−δi3 ,1)

. . . 〈ψiN |φjN 〉
︸ ︷︷ ︸

δiN ,jN (1−δiN ,1)

=
1

N!

N∑

i1,...,iN=1

N∑

j1,j2=1

ǫi1,i2,i3,...,iNǫj1,j2,i3,...,iN

·〈ψi1ψi2 |Ŵ |φj1φj2〉(1− δi3,1) . . . (1− δiN ,1)
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Now we can work out the sum over the indices j1, j2. Because the antisymmetric tensor vanishes,
whenever two indices are equal, the indices j1, j2 must be in the set j1, j2 ∈ {i1, i2}. Furthermore the
two indices j1, j2 must differ, again to avoid that the antisymmetric tensor vanishes. Hence only two
terms from the second sum survive, namely the one with (j1, j2) = (i1, i2) and the one where the two
indices are interchanged (j1, j2) = (i2, i1).

〈Ψ|Ŵ1,2|Φ〉 =
1

N!

N∑

i1,...,iN=1

[

(ǫi1,i2,...,iN )
2 〈ψi1ψi2 |Ŵ1,2|φi1φi2〉

+ǫi1,i2,i3,...,iN ǫi2,i1,i3,...,iN 〈ψi1ψi2 |Ŵ1,2|φi2φi1〉
]

·(1− δi3,1) . . . (1− δiN ,1)

=
1

N!

N∑

i1,...,iN=1

(ǫi1,i2,...,iN )
2
(

〈ψi1ψi2 |Ŵ1,2|φi1φi2〉 − 〈ψi1ψi2 |Ŵ1,2|φi2φi1〉
)

·(1− δi3,1) . . . (1− δiN ,1)

Furthermore the there is a contribution only if one of the first two indices i1, i2 has the value 1. If
that is not the case, there is a term (1− δi ,1) that vanishes.

〈Ψ|Ŵ1,2|Φ〉 =
1

N!

N∑

i2,i3,...,iN=1

(ǫ1,i2,...,iN )
2
(

〈ψ1ψi2 |Ŵ1,2|φ1φi2〉 − 〈ψ1ψi2 |Ŵ1,2|φi2φ1〉
)

+
1

N!

N∑

i1,i3,...,iN=1

(ǫi1,1,,i3...,iN )
2
(

〈ψi1ψ1|Ŵ1,2|φi1φ1〉 − 〈ψi1ψ1|Ŵ1,2|φ1φi1〉
)

=
2

N!

N∑

n=2

(

〈ψ1ψn|Ŵ1,2|φ1φn〉 − 〈ψ1ψn|Ŵ1,2|φnφ1〉
) N∑

i3,...,iN=1

(ǫ1,n,...,iN )
2

︸ ︷︷ ︸

(N−2)!

=
2(N − 2)!

N!
︸ ︷︷ ︸

2
N(N−1)

N∑

n=2

(

〈ψ1ψn|Ŵ1,2|φ1φn〉 − 〈ψ1ψn|Ŵ1,2|φnφ1〉
)

Since the operator has the form Ŵ = 1
2

∑N
i 6=j Ŵi ,j . Each pair contributes the same result. As there

are N(N − 1) distinct pairs in the double-sum, we obtain

〈Ψ|Ŵ |Φ〉 =
N∑

n=1

(
〈ψ1ψn|Ŵ1,2|φ1φn〉 − 〈ψ1ψn|Ŵ1,2|φnφ1〉

)

This result corresponds to the second line in the second Slater-Condon rule Eq. ??. The sum runs
now over all terms because the element with n = 1 cancels anyway.

E.4 Matrix element of a one-particle operator with Slater deter-

minants differing by 2 one-particle orbitals

〈Ψ|Â1|Φ〉 =
1

N!

N∑

i1,...,iN=1

N∑

j1,...,jN=1

ǫi1,i2,...,iNǫj1,j2,...,jN

·〈ψi1 |Â|φj1〉 〈ψi2 |φj2〉
︸ ︷︷ ︸

δi2 ,j2 (1−δi2 ,1)(1−δi2 ,2)

. . . 〈ψiN |φjN 〉
︸ ︷︷ ︸

δiN ,jN (1−δiN ,1)(1−δiN ,2)
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It is evident that this matrix element vanishes, because in each term there is at least one scalar
product between to orbitals that differ in the two slater determinants.

This result corresponds to the first line in the third Slater-Condon rule Eq. ??.

E.5 Matrix element of a two-particle operator with Slater de-

terminants differing by 2 one-particle orbitals

〈Ψ|Ŵx1,x2 |Φ〉 =
1

N!

∑

i1,...,iN

∑

j1,...,jN

ǫi1,i2,...,iNǫj1,j2,...,jN

·〈ψi1ψi2 |Â|φj1φj2〉 〈ψi3 |φj3〉
︸ ︷︷ ︸

δi3 ,j3 (1−δi3 ,1)(1−δi3 ,2)

. . . 〈ψiN |φjN 〉
︸ ︷︷ ︸

δiN ,jN (1−δiN ,1)(1−δiN ,2)

=
1

N!

2∑

i1,i2=1

2∑

j1,j2=1

〈ψi1ψi2 |Â|φj1φj2〉
∑

i3,...,iN

ǫi1,i2,i3...,iN ǫj1,j2,i3...,iN

=
1

N!

2∑

i1,i2=1

2∑

j1,j2=1

〈ψi1ψi2 |Â|φj1φj2〉(N − 2)! (δi1,j1δi2,j2 − δi1,j2δi2,j1)

=
2

N(N − 1)
(
〈ψ1ψ2|Â|φ1φ2〉 − 〈ψ1ψ2|Â|φ2φ1〉

)

With the interaction Ŵ = 1
2

∑N
i 6=j Ŵi ,j we obtain with 〈Ψ|Wi ,j |Φ〉 = 〈Ψ|W1,2|Φ〉

〈Ψ|Ŵ |Φ〉 = 〈ψ1ψ2|Â|φ1φ2〉 − 〈ψ1ψ2|Â|φ2φ1〉

This result corresponds to the second line in the third Slater-Condon rule Eq. ??.

E.6 Matrix elements between Slater determinants differing by

more than two one-particle orbitals

The result vanishes. The argument is analogous to that about in Section E.4



Appendix F

Non-adiabatic effects

This section contains some derivations to which we refer in the section on non-andiabatic effects.

F.1 The off-diagonal terms of the first-derivative couplings ~An,m,j

The non-Born-Oppenheimer terms are related to the derivative couplings defined in Eq. 12.17 p. 161

~Am,n,j
Eq. 12.17
:= 〈ΨBOm |

~

i
~∇Rj |ΨBOn 〉 = 〈ΨBOm |P̂j |ΨBOn 〉 (F.1)

Here we relate the first-derivative couplings to to the derivatives of the Born-Oppenheimer Hamiltonan
and the Born-Oppenheimer surfaces.

FIRST-DERIVATIVE COUPLINGS

The first-derivative couplings can be expressed as

~Am,n,j (~R)
Eq. F.4
=

〈

ΨBOm (~R)
∣
∣
∣

[
P̂j , Ĥ

BO(~R)
]

−

∣
∣
∣ΨBOn (~R)

〉

ÊBOn (~R)− EBOm (~R)
for En 6= Em (F.2)

where P̂j = ~

i
~∇Rj is the momentum operator for the j-th nucleus.

The matrix of first-derivative couplings is hermitean, that is

Am,n,j
Eq. F.5
= A∗n,m,j (F.3)

This will make it evident that non-adiabatic effects will be dominant, when two Born-Oppenheimer
surfaces become degenerate.

The off-diagonal term of ~An,m,j (~r) of the first non-adiabatic term ar obtained as follows: We
begin with the Schrödinger equation for the Born-Oppenheimer wave function

(

ĤBO(~R)− EBOn (~R)
)

|ΨBOn (~R〉 = 0

Because this equation is valid for all atomic positions, also the gradient of the above expression
vanishes.

0 = ~∇R
(

ĤBO(~R)− EBOn (~R)
)

|ΨBOn (~R〉

=

[

~∇R, ĤBO(~R)
]

|ΨBOn (~R〉 − |ΨBOn (~R〉~∇REBOn (~R) +
(

ĤBO(~R)− EBOn (~R)
)

~∇R|ΨBOn (~R〉
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Now we multiply from the left with the bra 〈ΨBOm | and form the scalar products in the electronic
Hilbert space.

0 = 〈ΨBOm |
[

~∇R, ĤBO(~R)
]

|ΨBOn (~R)〉 − 〈ΨBOm ||ΨBOn (~R〉~∇REBOn (~R) + 〈ΨBOm |
(

ĤBO(~R)− EBOn (~R)
)

~∇R|ΨBOn (~R〉

= 〈ΨBOm |
[

~∇R, ĤBO(~R)
]

|ΨBOn (~R)〉 − 〈ΨBOm |ΨBOn 〉~∇REBOn (~R) + 〈ΨBOm |
(

ĤBO(~R)− EBOn (~R)
)

~∇R|ΨBOn 〉

= 〈ΨBOm |
[

~∇R, ĤBO(~R)
]

|ΨBOn 〉 − δm,n ~∇REBOn (~R) +
(

ÊBOm (~R)− EBOn (~R)
)

〈ΨBOm |~∇R|ΨBOn 〉

Thus we obtain

~Am,n,j = 〈ΨBOm |
~

i
~∇Rj |ΨBOn 〉 =

〈ΨBOm |
[
~

i
~∇Rj , ĤBO(~R)

]

−
|ΨBOn 〉

ÊBOn (~R)− EBOm (~R)

=
〈ΨBOm |

[

P̂j , Ĥ
BO(~R)

]

−
|ΨBOn 〉

ÊBOn (~R)− EBOm (~R)
for En 6= Em (F.4)

This is the proof for Eq. F.2 given above.
One can furthermore show that the first-derivative couplings are purely real. For this purpose, we

investigate the derivatives of the overlap matrix elements of the Born-Oppenheimer states.

〈ΨBOm |ΨBOn 〉 = δm,n
0 = ~∇Rj 〈ΨBOm |ΨBOn 〉
= 〈~∇RjΨBOm |ΨBOn 〉+ 〈ΨBOm |~∇Rj |ΨBOn 〉
= 〈ΨBOn |~∇RjΨBOm 〉∗ + 〈ΨBOm |~∇Rj |ΨBOn 〉
0 = −〈ΨBOn |P̂jΨBOm 〉∗ + 〈ΨBOm |P̂j |ΨBOn 〉

⇒ Am,n,j(~R) = A
∗
n,m,j (~R) (F.5)

This tells us that the first derivative couplings are an Hermitean matrix, which prooves Eq. F.3.
This argument Eq. F.5 has been used to argue that the diagonal derivative couplings vanish, if

the wave functions are purely real. Because the momentum operator is an imaginary, the diagonal
operator matrix element An,n,j are purely imaginary. Because the An,m,j is hermitean, the diagonal
element An,n,j must be purely real. From this contradiction follows that An,n,j = 0 for real wave
functions.



Appendix G

Non-crossing rule

The non-crossing rule has been derived by von Neumann and Wigner[150]. The noncrossing rule
has been criticized, but the criticism has been refuted.(see discussion in [151])

NON-CROSSING RULE

In general, i.e. without symmetries, a band crossing of two bands is a m− 3-dimensional manifold in
the m-dimensional parameter space of a Hamiltonian.
If the Hamiltonian is real, for example due to time-inversion symmetry, a band crossing is a m − 2-
dimensional manifold.

Consider a Hamiltonian in an n-dimensional Hilbert space with elements Hi j(x1, . . . , xm), that de-
pend on a set (x1, . . . , xm) of m parameters. The parameters may be atomic positions. The condition
that two eigenvalues cross, determines a sub-manifold in the parameter space of dimension m − 3
or of dimension m − 2 if the Hamiltonian is chosen real. Thus the condition of a double degeneracy
fixes three parameters of a complex Hamiltonain and two parameters of a real Hamiltonian.

Thus, if the (real) Hamiltonian depends on a three coordinates, the degeneracy is limited to a
line, which is one condition for a conical intersection(for a review see the paper of Yarkony[151]).

The complex case is required, for example, in the presence of magnetic fields, because magnetic
fields break the time inversion symmetry of the wave function.

General case: complex Hamiltonians

The argument depends on counting the number of free variables in a Hamiltonian with a given set
of eigenvalues. The Hamiltonian is specified uniquely by its eigenvalues and eigenvectors

Hi ,j =
∑

k

U†i ,kEkUk,j (G.1)

It takes n conditions to fix the eigenvalues, and n2 conditions to fix a unitary matrix.
To show that a unitary matrix is determined by n2 conditions, we start from a general complex

matrix, which has (2n)2 real parameters. A complex matrix is unitary, if its column vectors are
orthonormal, i.e. U†U = 111. Orthonormality consists of n2 conditions, that is n(n−1)/2 double-valued
conditions (real and imaginary part) for orthogonality and n real conditions for the normalization.
Thus a general unitary is determined by n2 real parameters.

However, the unitary matrix in Eq. G.1 is not unique, because any additional unitary transformation
V , that does not change the diagonal matrix of the eigenvalues, can be multiplied to the already
existing unitary matrix U.

Hi ,j =
∑

k

U†i ,kEkUk,j =
∑

k,m,n

U†i ,mV
†
m,kEkVk,nUn,j if

∑

k

V †m,kEkVk,n = Emδm,n
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For each singly degenerate state, the unitary matrix V , i.e. the subblock referring only to this
state, is a complex phase factor. That is there is one degree of freedom. For a doubly degenerate
state, V can be a unitary matrix in this two-dimensional subspace. A unitary matrix in two dimensions
has 22 = 4 degrees of freedom. Continuing this argument we find that, if the states have degeneracies
g1, g2, . . . , gℓ, the number of degreees of freedom of V is v :=

∑ℓ
j=1 g

2
j . Here ℓ is the number of

degenerate multiplets and
∑ℓ

j=1 gj = n.
Thus, the Hamiltonian is fixed by

ℓ+ n2 −
ℓ∑

j=1

g2j

ℓ conditions fix the eigenvalues and n2−
∑ℓ

j=1 g
2
j is the number of conditions fixing the unitary matrix

up to factors that do not affect the eigenvalues.
Example: Consider a Hamiltonian with n non-degenerate states: It takes n + n2 − n = n2

parameters to determine a Hamiltonian without degeneracies and (n−1)+n2−22− (n−2) = n2−3
parameters to fix the Hamiltonian with a double degeneracy. Thus the condition that one point is
degenerate introduces n2 − (n2 − 3) = 3 conditions on the parameter set. As a consequence two
bands in three dimensions can cross in a point, but not along a line.

Consider a Hamiltonian H(~R) that depends parametrically on the coordinates of one atom. The
condition of a doubly degenerate state determines all three parameters. Hence the degeneracy will
be a single point. This is one condition for a conical intersection.

Real Hamiltonians

If we exploit time-inversion symmetry, we can choose the wave functions to be real. In this case the
count is different: Instead of unitary matrices, we need to use real, orthogonal matrices.

A real, orthogonal matrix of dimension n has 12n(n−1) independent parameters. This is obtained
as follows: A general real matrix has n2 real parameters. The conditions for orthonormality of the
eigenvectors are no more all independent, but an interchange of two indices in

∑

k Uk,iUk,j = δi ,j
leads to the same condition. Thus the orthonormality imposes n(n + 1)/2 conditions. Hence a real
orthonormal matrix has n2 − n(n + 1)/2 = n(n − 1)/2 degrees of freedom.

Thus the number of degrees of freedom for a real hermitean matrix is

ℓ+
n(n − 1)
2

−
ℓ∑

j=1

gj (gj − 1)
2

Let us now analyze the case where two band cross: The non-degenerate Hamiltonian has n +
n(n−1)
2 = n(n+1)

2 degrees of freedom. A matrix with two degenerate states has (n− 1)+ n(n−1)
2 − 1 =

n(n+1)
2 − 2 degrees of freedom. Thus a band crossing of a real Hamiltonian fixes two dimensions.

Hence, a conical intersection of real Hamiltonians in a a three dimensional space form a line.
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